26 research outputs found

    The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans

    Get PDF
    Polarized intracellular trafficking in epithelia is critical in development, immunity, and physiology to deliver morphogens, defensins, or ion pumps to the appropriate membrane domain. The mechanisms that control apical trafficking remain poorly defined. Using Caenorhabditis elegans, we characterize a novel apical secretion pathway involving multivesicularbodies and the release of exosomes at the apical plasma membrane. By means of two different genetic approaches, we show that the membrane-bound V0 sector of the vacuolar H+-ATPase (V-ATPase) acts in this pathway, independent of its contribution to the V-ATPase proton pump activity. Specifically, we identified mutations in the V0 “a” subunit VHA-5 that affect either the V0-specific function or the V0+V1 function of the V-ATPase. These mutations allowed us to establish that the V0 sector mediates secretion of Hedgehog-related proteins. Our data raise the possibility that the V0 sector mediates exosome and morphogen release in mammals

    A Model of Bacterial Intestinal Infections in Drosophila melanogaster

    Get PDF
    Serratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S. marcescens resistance to the Drosophila immune deficiency (imd)-mediated humoral response requires the bacterial lipopolysaccharide O-antigen. If ingested by Drosophila, bacteria cross the gut and penetrate the body cavity. During this passage, the bacteria can be observed within the cells of the intestinal epithelium. In such an oral infection model, the flies succumb to infection only after 6 days. We demonstrate that two complementary host defense mechanisms act together against such food-borne infection: an antimicrobial response in the intestine that is regulated by the imd pathway and phagocytosis by hemocytes of bacteria that have escaped into the hemolymph. Interestingly, bacteria present in the hemolymph elicit a systemic immune response only when phagocytosis is blocked. Our observations support a model wherein peptidoglycan fragments released during bacterial growth activate the imd pathway and do not back a proposed role for phagocytosis in the immune activation of the fat body. Thanks to the genetic tools available in both host and pathogen, the molecular dissection of the interactions between S. marcescens and Drosophila will provide a useful paradigm for deciphering intestinal pathogenesis

    Spiro-based thermally activated delayed fluorescence emitters with reduced nonradiative decay for high-quantum-efficiency, low-roll-off, organic light-emitting diodes

    Get PDF
    E.Z.-C. thanks the Leverhulme Trust (No. RPG-2016-047) and the University of St Andrews for support. The authors are grateful to the EPSRC for financial support (grants EP/ P007805/1, EP/P010482/1, EP/L017008/1, EP/J01771X, and EP/J00916). M.M. thanks the Innovation Programme H2020-MSCA-IF-2014-659237 for financial support. W.L. thanks the China Scholarship Council (grant number 201708060003). V.L. thanks the F.R.S.-FNRS for his Research Associate position. Computational resources have been provided by the Consortium des É quipements de Calcul Intensif (CÉ CI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.FNRS) under Grant No. 2.5020.11, GEQ U.G006.15, 1610468, and RW/GEQ. (2016). D.B. is an FNRS Research Director.Herein, we report the use of spiro-configured fluorene-xanthene scaffolds as a novel, promising, and effective strategy in thermally activated delayed fluorescence (TADF) emitter design to attain high photoluminescence quantum yields (ΦPL), short delayed luminescence lifetime, high external quantum efficiency (EQE), and minimum efficiency roll-off characteristics in organic light-emitting diodes (OLEDs). The optoelectronic and electroluminescence properties of SFX (spiro-(fluorene-9,9′-xanthene))-based emitters (SFX-PO-DPA, SFX-PO-DPA-Me, and SFX-PO-DPA-OMe) were investigated both theoretically and experimentally. All three emitters exhibited sky blue to green emission enabled by a Herzberg–Teller mechanism in the excited state. They possess short excited-state delayed lifetimes (<10 μs), high photoluminescence quantum yields (ΦPL ∼ 70%), and small singlet–triplet splitting energies (ΔEST < 0.10 eV) in the doped films in an mCP host matrix. The OLEDs showed some of the highest EQEs using spiro-containing emitters where maximum external quantum efficiencies (EQEmax) of 11 and 16% were obtained for devices using SFX-PO-DPA and SFX-PO-DPA-OMe, respectively. Further, a record EQEmax of 23% for a spiro-based emitter coupled with a low efficiency roll-off (19% at 100 cd m–2) was attained with SFX-PO-DPA-Me.PostprintPostprintPeer reviewe

    The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model

    Get PDF
    Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence

    Genes required for osmoregulation and apical secretion in Caenorhabditis elegans

    No full text
    Few studies have investigated whether or not there is an interdependence between osmoregulation and vesicular trafficking. We previously showed that in Caenorhabditis elegans che-14 mutations affect osmoregulation, cuticle secretion, and sensory organ development. We report the identification of seven lethal mutations displaying che-14-like phenotypes, which define four new genes, rdy-1-rdy-4 (rod-like larval lethality and dye-filling defective). rdy-1, rdy-2, and rdy-4 mutations affect excretory canal function and cuticle formation. Moreover, rdy-1 and rdy-2 mutations reduce the amount of matrix material normally secreted by sheath cells in the amphid channel. In contrast, rdy-3 mutants have short cystic excretory canals, suggesting that it acts in a different process. rdy-1 encodes the vacuolar H+-ATPase a-subunit VHA-5, whereas rdy-2 encodes a new tetraspan protein. We suggest that RDY-1/VHA-5 acts upstream of RDY-2 and CHE-14 in some tissues, since it is required for their delivery to the epidermal, but not the amphid sheath, apical plasma membrane. Hence, the RDY-1/VHA-5 trafficking function appears essential in some cells and its proton pump function essential in others. Finally, we show that RDY-1/VHA-5 distribution changes prior to molting in parallel with that of actin microfilaments and propose a model for molting whereby actin provides a spatial cue for secretion

    Fly culture collapse disorder: detection, prophylaxis and eradication of the microsporidian parasite Tubulinosema ratisbonensis infecting Drosophila melanogaster

    No full text
    International audienceDrosophila melanogaster is a robust model to investigate many biological problems. It is however prone to some infections, which may endanger fly stocks if left unchecked for. One such infection is caused by an obligate fungal intracellular parasite, Tubulinosema ratisbonensis, which can be found in laboratory stocks. Here, we identify and briefly characterize a T. ratisbonensis strain that was infesting our Drosophila cultures and that required intensive measures to contain and eradicate the infection. We describe the phenotypes of infested stocks. We also report PCR-based techniques that allow the detection of infested stocks with a high sensitivity. We have developed a high-throughput qPCR assay that allows the efficient parallel screening of a large number of potentially-infested stocks. We also have investigated several prophylactic measures to prevent the further contamination of stocks, namely UV-exposure, ethanol treatment, bleaching, and desiccation. Bleaching was found to kill all spores. Other treatments were less effective but were found to be sufficient to prevent further contamination of noninfested stocks. Two treatments were efficacious in curing infested stocks (1) bleaching of eggs and subsequent raising of the larvae in clean vials; (2) fumagillin treatment. These cures only work on stocks that have not become too weak to withstand the procedures

    Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens

    No full text
    International audienceThe humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected

    Single-phase flow model development for macroscopic liquid flow evaluation in gas-liquid reactors, by computational fluid dynamics

    No full text
    This paper proposes a single-phase flow model to simulate the flow induced in a liquid by the injection of gas dispersed in this liquid as bubbles forming a curtain. It aims at predicting macroscopic liquid flow and mixing time. This single-phase flow model is developed as an alternative to two-phase flow models. The model is based on the assumption that the liquid flow is induced by a density imbalance between the bulk zone and the bubble curtain zone. The density in the bulk is set to the water density while the density in the bubble curtain corresponds to the air water mixture density and is assessed by numerical simulations thanks to an iterative procedure. Only the knowledge of the injected air flow rate and the bubble liquid relative velocity is required. The single-phase flow model is applied to assess the liquid flow and the mixing in open quarries having a complex geometry. The liquid velocities and the flow structure in the open quarries simulated with the single-phase flow model are in good agreement with those predicted by numerical simulations based on a two-phase flow model.info:eu-repo/semantics/publishe

    Single-phase flow model development for macroscopic liquid flow evaluation in gas-liquid reactors, by computational fluid dynamics

    No full text
    This paper proposes a single-phase flow model to simulate the flow induced in a liquid by the injection of gas dispersed in the form of a bubble curtain. It aims at predicting macroscopic liquid flow and mixing time. This single-phase flow model is developed as an alternative to two-phase flow models. The model is based on the assumption that the liquid flow is induced by a density imbalance between the bulk zone and the bubble curtain zone. The density in the bulk is set to the water density while the density in the bubble curtain corresponds to the air-water mixture density and is assessed by numerical simulations, thanks to an iterative procedure. Only the knowledge of the injected air flow rate and the bubble liquid relative velocity is required. The single-phase flow model is applied to assess the liquid flow and the mixing in open quarries having a complex geometry. The liquid velocities and the flow structure in the open quarries simulated with the single-phase flow model are in good agreement with those predicted by numerical simulations based on a two-phase flow model. © 2011 Elsevier Ltd.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore