1,627 research outputs found

    The Effect of Tumor Microenvironment on Autophagy and Sensitivity to Targeted Therapy in EGFR-Mutated Lung Adenocarcinoma

    Get PDF
    Lung cancer is the top cancer killer worldwide. Tyrosine kinase inhibitors (TKIs), for example erlotinib, are commonly used to target epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (ADC). Autophagy is a cellular response to stress, serving as a protective mechanism during anticancer therapy. The tumor microenvironment (TME) is composed of non-tumor cells that include fibroblasts. Our study aimed to investigate the effect of TME on autophagy and TKI sensitivity. Following cell sorting after direct co-culturing, autophagy and cytokine production were observed in both HCC827 and MRC-5 cells. The synergistic combination of erlotinib and chloroquine (autophagy inhibitor) was observed under TME. Tumor growth was significantly suppressed with combined erlotinib/chloroquine compared with erlotinib in HCC827 xenografts.published_or_final_versio

    Growth suppressive effect of pegylated arginase in malignant pleural mesothelioma xenografts

    Get PDF
    BACKGROUND: Malignant pleural mesothelioma (MPM) is a difficult-to-treat global disease. Pegylated arginase (BCT-100) has recently shown anti-tumor effects in hepatocellular carcinoma, acute myeloid leukemia and melanoma. This study aims to investigate the effects of PEG-BCT-100 in MPM. METHODS: A panel of 5 mesothelioma cell lines (H28, 211H, H226, H2052 and H2452) was used to study the in vitro effects of BCT-100 by crystal violet staining. The in vivo effects of BCT-100 were studied using 211H and H226 nude mice xenografts. Protein expression (argininosuccinate synthetase, ornithine transcarbamylase, cleaved PARP, cleaved caspase 3, cyclins (A2, D3, E1 and H), CDK4 and Ki67) and arginine concentration were evaluated by Western blot and ELISA respectively. Cellular localization of BCT-100 was detected by immunohistochemistry and immunoflorescence. TUNEL assay was used to identify cellular apoptotic events. RESULTS: Argininosuccinate synthetase was expressed in H28, H226, and H2452 cells as well as 211H and H266 xenografts. Ornithine transcarbamylase was undetectable in all cell lines and xenograft models. BCT-100 reduced in vitro cell viability (IC50 values at 13-24 mU/ml, 72 h) across different cell lines and suppressed tumor growth in both 211H and H226 xenograft models. BCT-100 (60 mg/kg) significantly suppressed tumor growth (p < 0.01) with prolonged median survival (p < 0.01) in both xenograft models. Combining BCT-100 with pemetrexed or cisplatin conferred no additional benefits over single agents. Serum and intratumoral arginine levels were effectively decreased by BCT-100, associated with cytosolic accumulation of BCT-100 within tumor cells. Apoptosis (PARP cleavage in 211H xenografts; Bcl-2 downregulation, and cleavage of PARP and caspase 3 in H226 xenografts; positive TUNEL staining in both) and G1 arrest (downregulation of cyclin A2, D3, E1 and CDK4 in 211H xenografts; suppression of cyclin A2, E1, H and CDK4 in H226 xenografts) were evident with BCT-100 treatment. Furthermore, proliferative factor Ki67 was downregulated in BCT-100 treatments arms. CONCLUSIONS: BCT-100 suppressed tumor growth with prolonged median survival partially mediated by intratumoral arginine depletion resulting in apoptosis and G1 arrest in mesothelioma xenograft models. The findings provide scientific evidence to support further clinical development of BCT-100 in treatment of MPM.published_or_final_versio

    Tumour Growth-Suppressive Effect of Arsenic Trioxide in Squamous Cell Lung Carcinoma

    Get PDF
    Squamous cell lung carcinoma (SCC) is the second commonest subtype of non-small cell lung carcinoma. The anticancer effects of arsenic trioxide (ATO) in lung adenocarcinoma and small cell lung carcinoma have been reported while in SCC are unknown. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Western blot were used to determine cell viability and protein expression respectively. Phosphatidylserine externalization, mitochondrial membrane depolarization and cell cycle distribution were studied using flow cytometry. The in vivo effect of ATO was investigated with a xenograft model. SK-MES-1 and SW900 SCC cells were sensitive to clinically relevant concentrations of ATO. ATO induced apoptosis, mitochondrial membrane depolarization, G2/M arrest, downregulation of XIAP, Bcl-2, E2F1, thymidylate synthase and RRM1 as well as upregulation of Bak, cleaved PARP and cleaved caspase 3 in a cell-line specific manner. In SW900 xenograft model, tumour growth was inhibited by ATO with formation of apoptotic bodies and downregulation of Bcl-2 and E2F1. In conclusion, ATO suppressed growth of SCC in vitro and in vivo.published_or_final_versio

    Maximum Power Game as a Physical and Social Extension of Classical Games

    Get PDF
    We consider an electric circuit in which the players participate as resistors and adjust their resistance in pursuit of individual maximum power. The maximum power game(MPG) becomes very complicated in a circuit which is indecomposable into serial/parallel components, yielding a nontrivial power distribution at equilibrium. Depending on the circuit topology, MPG covers a wide range of phenomena: from a social dilemma in which the whole group loses to a well-coordinated situation in which the individual pursuit of power promotes the collective outcomes. We also investigate a situation where each player in the circuit has an intrinsic heat waste. Interestingly, it is this individual inefficiency which can keep them from the collective failure in power generation. When coping with an efficient opponent with small intrinsic resistance, a rather inefficient player gets more power than efficient one. A circuit with multiple voltage inputs forms the network-based maximum power game. One of our major interests is to figure out, in what kind of the networks the pursuit for private power leads to greater total power. It turns out that the circuits with the scale-free structure is one of the good candidates which generates as much power as close to the possible maximum total.ope

    Day-ahead allocation of operation reserve in composite power systems with large-scale centralized wind farms

    Get PDF
    This paper focuses on the day-ahead allocation of operation reserve considering wind power prediction error and network transmission constraints in a composite power system. A two-level model that solves the allocation problem is presented. The upper model allocates operation reserve among subsystems from the economic point of view. In the upper model, transmission constraints of tielines are formulated to represent limited reserve support from the neighboring system due to wind power fluctuation. The lower model evaluates the system on the reserve schedule from the reliability point of view. In the lower model, the reliability evaluation of composite power system is performed by using Monte Carlo simulation in a multi-area system. Wind power prediction errors and tieline constraints are incorporated. The reserve requirements in the upper model are iteratively adjusted by the resulting reliability indices from the lower model. Thus, the reserve allocation is gradually optimized until the system achieves the balance between reliability and economy. A modified two-area reliability test system (RTS) is analyzed to demonstrate the validity of the method.This work was supported by National Natural Science Foundation of China (No. 51277141) and National High Technology Research and Development Program of China (863 Program) (No. 2011AA05A103)

    Novel cancerization marker, TP53, and its role in distinguishing normal tissue adjacent to cancerous tissue from normal tissue adjacent to benign tissue

    Full text link
    Foundation of Xiamen Science and Technology Bureau [3502Z20104032, 3502Z20100002]; Medical innovation Foundation of Fujian Health Department [2011-CXB-38]; Natural Science Foundation of Fujian Province [2010J05137, 2012J01414]; National Natural Science Foundation of China [81272445, 61100106]Background: The histopathological and molecular heterogeneity of normal tissue adjacent to cancerous tissue (NTAC) and normal tissue adjacent to benign tissue (NTAB), and the availability of limited specimens make deciphering the mechanisms of carcinogenesis challenging. Our goal was to identify histogenetic biomarkers that could be reliably used to define a transforming fingerprint using RNA in situ hybridization. Methods: We evaluated 15 tumor-related RNA in situ hybridization biomarkers using tumor microarray and samples of seven tumor-adjacent normal tissues from 314 patients. Biomarkers were determined using comprehensive statistical methods (significance of support vector machine-based artificial intelligence and area under curve scoring of classification distribution). Results: TP53 was found to be a most reliable index (P 87%) for distinguishing NTAC from NTAB, according to the results of a significance panel (BCL10, BECN1, BRCA2, FITH, PTCH11 and TP53). Conclusions: The genetic alterations in TP53 between NTAC and NTAB may provide new insight into the field of cancerization and tumor transformation

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell

    Chemotactic response and adaptation dynamics in Escherichia coli

    Get PDF
    Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript (19 pages, 5 figures) and supplementary information; added additional clarification on alternative adaptation models in supplementary informatio
    corecore