663 research outputs found

    Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.

    Get PDF
    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social behaviours--is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signalling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation through activation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle but instead leads to premature sarcopenia. Considering that oxytocin is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle ageing

    Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina

    Get PDF
    In this study we explored how picoplankton community structure and diversity varied along three cascade oligo-mesotrophic reservoirs of the Limay River (Patagonia, Argentina): Alicura, Piedra del Águila and Ramos MexĂ­a. We analyzed the spatial changes, covering lotic and lentic stretches along a gradient of 262 km from Andes to steppe, and we also sampled the main affluent of the Limay River (Collon Cura). In all sampling sites the main limnological variables were measured, and the picoplankton abundance (autotrophic and heterotrophic) was analyzed by flow cytometry. The bacterial biodiversity was assessed using high throughput sequencing Illumina MiSeq. We expected an increase in the trophic state along this series of cascade reservoirs, which would determine spatial differences in the structure of the picoplankton communities. We also hypothesized that the lotic and lentic conditions along the system would influence the bacterial composition. The results showed a slight increase in trophic state together with an increase in overall picoplankton abundance downstream, towards Ramos MexĂ­a Reservoir. Picocyanobacteria were represented by phycoerythrin-rich cells all along the system, in accordance to the pattern described for oligotrophic aquatic ecosystems. Multivariate analyses based on bacterial OTU composition and environmental variables showed a spatial ordination of sites following the trend of increasing trophic state downstream. Molecular analyses of bacterial OTU diversity also showed an increase in richness and a decrease in evenness at the lotic stretches, and the opposite pattern in the reservoirs, suggesting that water retention time may play a role in structuring the community composition.Fil: Bernal, MarĂ­a Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: Lu, Lunhui. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Sabio y GarcĂ­a, Carmen Alejandra. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: SĂĄnchez, MarĂ­a Laura. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: Vera, Maria Solange. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: Porcel, Elisa MarĂ­a Sol. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: Sinistro, Rodrigo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; ArgentinaFil: Li, Zhe. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Izaguirre, Irina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de EcologĂ­a, GenĂ©tica y EvoluciĂłn de Buenos Aires; Argentin

    Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)

    Get PDF
    The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∌1 ÎŒM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al

    Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters

    Get PDF
    Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed

    The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)

    Get PDF
    The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway

    Genomic encyclopedia of sugar utilization pathways in the Shewanella genus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.</p> <p>Results</p> <p>We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the <it>Shewanella </it>genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across <it>Shewanella </it>species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.</p> <p>Comparison of the reconstructed catabolic pathways with <it>E. coli </it>identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks.</p> <p>Conclusions</p> <p>The reconstructed sugar catabolome in <it>Shewanella </it>spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.</p

    A Multi-Institutional Analysis of Adjuvant Chemotherapy and Radiation Sequence in Women With Stage IIIC Endometrial Cancer

    Get PDF
    PURPOSE: Our purpose was to evaluate the effect of sequence and type of adjuvant therapy for patients with stage IIIC endometrial carcinoma (EC) on outcomes. METHODS AND MATERIALS: In a multi-institutional retrospective cohort study, patients with stage IIIC EC who had surgical staging and received both adjuvant chemotherapy and radiation therapy (RT) were included. Adjuvant treatment regimens were classified as adjuvant chemotherapy followed by sequential RT (upfront chemo), which was predominant sequence; RT with concurrent chemotherapy followed by chemotherapy (concurrent); systemic chemotherapy before and after RT (sandwich); adjuvant RT followed by chemotherapy (upfront RT); or chemotherapy concurrent with vaginal cuff brachytherapy alone (chemo-brachy). Overall survival (OS) and recurrence-free survival (RFS) rates were estimated by the Kaplan-Meier method. RESULTS: A total of 686 eligible patients were included with a median follow-up of 45.3 months. The estimated 5-year OS and RFS rates were 74% and 66%, respectively. The sequence and type of adjuvant therapy were not correlated with OS or RFS (adjusted P = .68 and .84, respectively). On multivariate analysis, black race, nonendometrioid histology, grade 3 tumor, stage IIIC2, and presence of adnexal and cervical involvement were associated with worse OS and RFS (all P \u3c .05). Regardless of the sequence of treatment, the most common site of first recurrence was distant metastasis (20.1%). Vaginal only, pelvic only, and paraortic lymph node (PALN) recurrences occurred in 11 (1.6%),15 (2.2 %), and 43 (6.3 %) patients, respectively. Brachytherapy alone was associated with a higher rate of PALN recurrence (15%) compared with external beam radiation therapy (5%) P \u3c .0001. CONCLUSIONS: The sequence and type of combined adjuvant therapy did not affect OS or RFS rates. Brachytherapy alone was associated with a higher rate of PALN recurrence, emphasizing the role of nodal radiation for stage IIIC EC. The vast proportion of recurrences were distant despite systemic chemotherapy, highlighting the need for novel regimens

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
    • 

    corecore