227 research outputs found

    Observation of negative differential conductance in a reverse-biased Ni/Ge Schottky diode

    No full text
    We report the experimental observation of negative differential conductance in a Ni/Ge Schottky diode. With the aid of theoretical models and numerical simulation we show that, at reverse bias, electons tunnel into the high electric field of the depletion region. This scatters the electrons into the upper valley of the Ge conduction band, which has a lower mobility. The observed negative differential conductance is hence attributed to the transferred-electron effect. This shows that Schottky contacts can be used to create hot electrons for transferred-electron devices

    Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography

    Get PDF
    The kinetic performance of a bare silica and C18 phase prepared from the same sub-2. μm and 3.5. μm base materials were compared in the HILIC and RP mode using both charged and neutral solutes. The HILIC column was characterised using the neutral solute 5-hydroxymethyluridine, the weak base cytosine, and the strong base nortriptyline, the latter having sufficient retention also in the RP mode to allow comparison of performance. Naphthalene was also used as a simple neutral substance to evaluate the RP column alone. The retention factors of all substances were adjusted to give similar values (k'. ~. 5.5) at their respective optimum linear velocities. Reduced van Deemter b-coefficients (determined by curve fitting and by the peak parking method, using a novel procedure involving switching to a dummy column) were significantly lower in HILIC for all substances compared with those found under RP conditions. Against expectation, c-coefficients were always lower in RP when compared with HILIC using sub-2. μm particles. While measurement of these coefficients is complicated by retention shifts caused by the influence of high pressure and by frictional heating effects, broadly similar results were obtained on larger particle (3.5. μm) phases. The mechanism of the separations was further investigated by examining the effect of buffer concentration on retention. It was concluded that HILIC can sometimes show somewhat inferior performance to RP for fast analysis at high mobile phase velocity, but clearly shows advantages when high column efficiencies, using longer columns at low flow velocity, are employed. The latter result is attributable to the lower viscosity of the mobile phase in HILIC and the reduced pressure requirement as well as the lower b-coefficients. © 2014 David V. McCalley

    Downgrading MELD Improves the Outcomes after Liver Transplantation in Patients with Acute-on-Chronic Hepatitis B Liver Failure

    Get PDF
    Background: High score of model for end-stage liver diseases (MELD) before liver transplantation (LT) indicates poor prognosis. Artificial liver support system (ALSS) has been proved to effectively improve liver and kidney functions, and thus reduce the MELD score. We aim to evaluate whether downgrading MELD score could improve patient survival after LT. Methodology/Principal Findings: One hundred and twenty-six LT candidates with acute-on-chronic hepatitis B liver failure and MELD score 30wereincludedinthisprospectivestudy.Ofthe126patients,42receivedemergencyLTwithin72h(ELTgroup)andtheother84weregivenALSSassalvagetreatment.Ofthe84patients,33werefoundtohavereducedMELDscore(,30)onthedayofLT(DGMgroup),51underwentLTwithpersistenthighMELDscore(NDGMgroup).Themedianwaitingtimeforadonorwas10forDGMgroupand9.5daysforNDGMgroup.InNDGMgroupthereisasignificantlyhigheroverallmortality(43.130 were included in this prospective study. Of the 126 patients, 42 received emergency LT within 72 h (ELT group) and the other 84 were given ALSS as salvage treatment. Of the 84 patients, 33 were found to have reduced MELD score (,30) on the day of LT (DGM group), 51 underwent LT with persistent high MELD score (N-DGM group). The median waiting time for a donor was 10 for DGM group and 9.5 days for N-DGM group. In N-DGM group there is a significantly higher overall mortality (43.1%) than that in ELT group (16.7%) and DGM group (15.2%). N-DGM (vs. ECT and DGM) was the only independent risk factor of overall mortality (P = 0.003). Age.40 years and the interval from last ALSS to LT.48 h were independent negative influence factors of downgrading MELD. Conclusions/Significance: Downgrading MELD for liver transplant candidates with MELD score 30 was effective i

    Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation

    Get PDF
    BACKGROUND: Phenotypically similar diseases have been found to be caused by functionally related genes, suggesting a modular organization of the genetic landscape of human diseases that mirrors the modularity observed in biological interaction networks. Protein complexes, as molecular machines that integrate multiple gene products to perform biological functions, express the underlying modular organization of protein-protein interaction networks. As such, protein complexes can be useful for interrogating the networks of phenome and interactome to elucidate gene-phenotype associations of diseases. METHODOLOGY/PRINCIPAL FINDINGS: We proposed a technique called RWPCN (Random Walker on Protein Complex Network) for predicting and prioritizing disease genes. The basis of RWPCN is a protein complex network constructed using existing human protein complexes and protein interaction network. To prioritize candidate disease genes for the query disease phenotypes, we compute the associations between the protein complexes and the query phenotypes in their respective protein complex and phenotype networks. We tested RWPCN on predicting gene-phenotype associations using leave-one-out cross-validation; our method was observed to outperform existing approaches. We also applied RWPCN to predict novel disease genes for two representative diseases, namely, Breast Cancer and Diabetes. CONCLUSIONS/SIGNIFICANCE: Guilt-by-association prediction and prioritization of disease genes can be enhanced by fully exploiting the underlying modular organizations of both the disease phenome and the protein interactome. Our RWPCN uses a novel protein complex network as a basis for interrogating the human phenome-interactome network. As the protein complex network can capture the underlying modularity in the biological interaction networks better than simple protein interaction networks, RWPCN was found to be able to detect and prioritize disease genes better than traditional approaches that used only protein-phenotype associations

    Potential Tumor Suppressor NESG1 as an Unfavorable Prognosis Factor in Nasopharyngeal Carcinoma

    Get PDF
    BACKGROUND:Recently we identified nasopharyngeal epithelium specific protein 1 (NESG1) as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). The purpose of this study is to investigate the involvement of NESG1 in tumor progression and prognosis of human NPC. METHODOLOGY/PRINCIPAL FINDINGS:NESG1 protein expression in NPC was examined. Survival analysis was performed using Kaplan-Meier method. The effect of NESG1 on cell proliferation, migration, and invasion were also investigated. RESULTS:NESG1 expression was downregulated in atypical hyperplasia and NPC samples compared to normal and squamous nasopharynx tissues. Reduced protein expression was negatively associated with the status of NPC progression. Patients with lower NESG1 expression had a shorter overall survival and disease-free time than did patients with higher NESG1 expression. Multivariate analysis suggested NESG1 expression as an independent prognostic indicator for NPC patient survival. Proliferation, migration, and invasion ability were significantly increased in cell lines following lentiviral-mediated shRNA suppression of NESG1 expression. Microarray analysis indicated that NESG1 participated in multiple pathways, including MAPK signaling and cell cycle regulation. Finally, DNA methylation microarray examination revealed a lack of hypermethylation at the NESG1 promoter, suggesting other mechanisms are involved in suppressing NESG1 expression in NPC. CONCLUSION:Our studies are the first to demonstrate that decreased NESG1 expression is an unfavorable prognostic factor for NPC

    Genome biology of the paleotetraploid perennial biomass crop Miscanthus

    Get PDF
    Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. x giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses

    Gene Expression Profiling via Multigene Concatemers

    Get PDF
    We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1–3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4–28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis
    corecore