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Abstract: Variability and intermittency of wind is the main challenge for making a reliable wind 

power forecasting (WPF). Meteorological and topological complexity makes it even harder to fit 

any forecasting algorithm to one particular case. This paper presents comparison of three short 

term WPF models based on three wind farms in China with different terrains and climates. The 

sensitivity effects of training samples on forecasting performance are investigated in terms of 

sample size, sample quality and sample time scale. Then, their adaptabilities and modeling 

efficiency are also discussed under different seasonal and topographic conditions. Results show 

that 1) radial basis function (RBF) and support vector machine (SVM) generally have higher 

prediction accuracy than that of genetic algorithm back propagation (GA-BP), but different 

models show advantages in different seasons and terrains. 2) WPF taking a month as the training 

time interval can increase the accuracy of short-term WPF. 3) The change of sample number for 

GA-BP and RBF is less sensitive than that of SVM. 4) GA-BP forecasting accuracy is equally 

sensitive to all size of training samples. RBF and SVM have different sensibility to different size 

of training samples. This study can quantitatively provide reference for choosing the appropriate 

WPF model and further optimization for specific engineering cases, based on better understanding 

of algorithm theory and its adaptability. In this way, WPF users can select the suitable algorithm 

for different terrains and climates to achieve reliable prediction for market clearing, efficient 

pricing, dispatching etc.  

Key words: wind power forecasting, training sample, model efficiency, BP neural network, RBF 

neural network, support vector machines 

I. INTRODUCTION 

As the increasing energy adequacy and environmental concerns, large-scale integration of 

wind power has been contributing more to the world energy supply. After a slowdown in 2013, 

wind industry set a new record for annual installations in 2014. Globally, 51,477 MW of new wind 

generating capacity was added in 2014 according to the global wind market statistics released by 

the Global Wind Energy Council (GWEC). The record-setting figure represents a 44% increase in 

the annual market, and is a solid sign of the recovery of the industry after a rough patch in the past 
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few years. Total cumulative installations stand at 369,553 MW at the end of 20141. 

China is the largest wind power market worldwide and has abundant wind energy resources. 

Wind power is becoming the third main power supplier in China after thermal power and hydro 

power. In 2014, Chinese wind power industry maintained a robust growth. 19,810 MW of new 

wind power installed capacity was added which reaching a new record. Wind power cumulative 

installation capacity was 96,370 MW which accounting for 7% of the total generation capacity of 

China and 27% of the global wind power installation. In 2014, wind power had 2.78% share of the 

total generation in power supply. It is estimated that the wind power capacity will reach 30 GW2. 

However, the intermittent nature of wind generation creates challenges for market trading, load 

management and the economic operation of power systems3,4.  

Reliable wind power forecasting (WPF) is one of effective ways to mitigate technological 

and economic impacts on the power system, because it provides direct estimation of wind power 

availability. Unfortunately, it is difficult to make an accurate prediction, especially in an area with 

complex topography or meteorological environment. Currently, mean average percentage error of 

the wind speed forecasting is approximately in the 8-20% range in Chinese wind farms5,41-45. 

Therefore, it is important for wind farm owners, system operators, and energy suppliers to 

understand how existing WPF models perform in different external conditions and to further 

improve their prediction accuracy.  

A great amount of literature has been devoted to short term WPF using statistical or physical 

approaches. Statistical models employ weather variables from numerical weather prediction 

(NWP) model to predict time series of future power generation. The relationships between 

weather variables and historical power generated at a wind farm are modeled by different artificial 

intelligent techniques. The algorithms include, for instance, time series analysis6,7, Kalman 

filtering8,9, neural network (NN)10-19, support vector machine (SVM)20-22,36,and relevance vector 

machine (RVM)23,24, etc. Physical models25-30 estimate wind condition at reference locations 

according to the atmospheric behaving law, then transfer to power production through power 

curve. It is independent of the measured historical data and can be used for both the newly built 

and the operating wind farms. Commonly used methods are the analytical methods or 

computational fluid dynamics (CFD) methods. For physical models, analytical method is efficient 

to compute but difficult to meet accuracy requirements. Conversely, CFD method solves the 

Navier-Stokes equation in every prediction process and simulates wind flow accurately. As a 

sacrifice, the computational burden of CFD method makes it challenging to satisfy real-time 

operation requirements.  

Among the statistical methods, artificial NN (ANN) is widely used because of its good 

prediction generalization, but it is sensitive to the size of training samples and suffers from the 

over-fitting problem. SVM is an effective machine learning method with small samples and can 

avoid over-fitting. But it can only use a continuous symmetric kernel with positive integral 

operator; the number of support vectors grows linearly with the size of training sample sets. RVM 



is a nonlinear pattern recognition model with simple structure based on Bayesian theory and 

marginal likelihood functions. It has no kernel function limitation and is offering excellent 

generalized prediction performance with even smaller samples.  

A number of studies tested and compared the performance of different WPF algorithms31-35. 

The results show that strong improvements of up to about 20% have been obtained by using the 

data of different NWP models or ensemble models as input data for the WPF models. Artificial 

neural network and vector machine methods can significantly improve the forecasting accuracy 

over traditional persistence methods, especially after optimization by genetic algorithm (GA) and 

particle swarm optimization (PSO). The multi-layer perceptron ANN (MLP ANN) outperforms 

SVM, regression trees and random forests in short term wind speed and wind power forecasting in 

Jursa and Rohrig’s study12. But, SVM for system orders from 1 to 11 had better accuracies than 

MLP ANN in Mohades’s wind speed forecasting results36. This above contradiction might come 

from the fact that each WPF methodology might have different adaptabilities and training 

characteristics towards various external conditions. So, it requires reproducing the results from 

existing WPFs in extensive practical examples, particularly in wind farms with complex 

topography and climate patterns. Moreover, a comprehensive understanding on the forecasting 

performance in China, the largest and newly born wind power industry center, is needed. And the 

influence of training samples on forecasting is also needed to investigate. 

To mitigate the above problems, this paper investigates the characteristics and adaptabilities 

of various WPF methodologies in three Chinese wind farms with various meteorological and 

topological conditions. Three statistical WPF models including back propagation optimized by 

genetic algorithm (GA-BP), Radial Basis Function (RBF), and SVM are considered for evaluation 

in three Chinese wind farms with distinctive external conditions. The performances of these 

models are assessed over three aspects: accuracy, adaptability and computational efficiency. The 

effects of training samples on forecasting accuracy are also analyzed in terms of their sizes, 

qualities and time scale. In this way, the most representative training samples can be selected for 

securing the best prediction performance. This work will help wind power predictors to select the 

most suitable prediction models for different terrains and climates, and it could also help to 

improve model performance according to the specific characteristics.  

The remainder of this paper is as follows: Section II and section III describe the operational 

data from wind farms in case study and the NWP tool used to provide meteorological variables for 

WPF. Section IV and V presents a brief summary of the used WPF methods and their evaluation 

criteria. Case study in section VI shows the comparison results. Finally, section VII presents a 

summary of the results.  

II. DATA 

In order to compare the adaptabilities of three WPF models, three wind farms in China are 

taken as examples to conduct one day ahead of wind power prediction.  



 No. 1 wind farm (WF1) has 1341.5 MW wind turbines, and is located in the coast of eastern 

China with a flat terrain. The data are collected with a 5 min interval, covering 12 months from 

2011.5.1 to 2012.4.30.  

 No. 2 wind farm (WF2) has 671.5 MW wind turbines, and is with a relatively flat terrain in 

northeast China. The data are collected with a 5 min interval, covering 12 months from 2011.1.5 

to 2011.12.31. 

 No. 3 wind farm (WF3) has 1001.5 MW wind turbines, and is with a complex terrain in the 

Chinese northern inland regions. The historical measurements are collected with a 5 min interval, 

covering 12 months from 2011.1.5 to 2011.12.31. The met mast wind speed data are missing from 

January to March, due to recording device fault. And no interpolation is conducted because there 

is no available wind speed measured at other height or other met mast. 

The data from wind farms include mean wind speed from met mast, the mean power output 

of wind farms from SCADA (supervisory control and data acquisition) and NWP of the wind 

components at the hub height of wind turbines. Met masts in all wind farms are located in the 

upwind prevailing wind direction, measuring the wind speed and wind direction at hub height and 

other atmosphere variables (pressure, temperature and humidity) at 10 m. The locations of these 

met masts were carefully selected and assessed before wind resource assessment and wind turbine 

locating by wind farm owners. So, the representative and the wake effect of met mast are 

considered. The historical measurements from all wind farms have a high level of availability over 

the question period. There are fewer than 4% missing operation data because of the occasional 

device faults in wind farms. The missing parts are simply deleted and no interpolation process is 

implemented for the missing data. Among the available data, 80% are considered as candidate 

training samples and remaining 20% are used as test samples. The historical power data are 

normalized by the installed capacities of respective wind farms. In this way, the specific 

characteristics of the wind farms can be masked in order to make a scale-free comparison among 

various wind farms.  

III. NUMERICAL WEATHER PREDICTION 

As wind vector is the key factor affecting the power generation characteristics of wind 

turbines, the WPF models take NWP as input data and power output at wind farms as the training 

targets. In this paper, the NWP data are produced and maintained at State Key Laboratory of 

Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power 

University), in China. The maintenance of NWP system makes sure it can have a consistent run.  

As NWP tool, WRF (weather research and forecasting) model predicts the time series of 

NWP wind speed and wind direction at met mast location to serve as reference point. It 

downscales to 6km horizontal resolution. NWP wind speed and wind direction are interpolated 

from the lowest levels in WRF to a hub height of wind turbines. The time resolution of NWP is the 

same as SCADA. The WRF model is initialized every day with the prediction of GFS (Global 

Forecasting System). GFS is released by NCEP (National Centres for Environmental Prediction) 



corresponding to the assimilation of atmospheric data at 00:00 GMT (Greenwich Mean Time). 

This prediction horizon of initial field is 72 hours ahead. The NWP is available at about 7:00 

GMT.  

The initial field of NWP is from NCEP FNL (Final) Operational Global Analysis data, which 

are calculated based on 1-degree by 1-degree grids prepared operationally every six hours. They 

are from the Global Data Assimilation System (GDAS), which continuously collects observational 

data from the Global Telecommunications System (GTS). The FNLs are made with the same 

model which NCEP uses in the Global Forecast System (GFS), but the FNLs are prepared about 

an hour or so after the GFS is initialized. The FNLs are delayed so that more observational data 

can be used. The GFS is run earlier in support of time critical forecast needs, and uses the FNL 

from the previous 6 hour cycle as part of its initialization37. 

The analyses are available on the surface, at 26 mandatory (and other pressure) levels from 

1000 millibars to 10 millibars, in the surface boundary layer and at some sigma layers, the 

tropopause and a few others. Parameters include surface pressure, sea level pressure, geopotential 

height, temperature, sea surface temperature, soil values, ice cover, relative humidity, u- and v- 

winds, vertical motion, vorticity and ozone37. 

IV. SUMMARY OF WPF METHODS 

There are three WPF methods implemented in this paper to evaluate their performance in 

wind farms mentioned above. The methods are summarized in Table I. For comparability, all 

methods use the same input variables, training samples and test samples; and the wind power 

forecasting horizon is 24 hours ahead. The input variables include NWP wind speed, sine of wind 

direction and cosine of wind direction38,39,40.  

The samples are 
1
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, where input variables are  , .sin , .cosi i i iX ws wd wd  and the 

training target is the power output iP in a wind farm.  iws is NWP speed; . iwd sin is sine of 

wind direction; . iwd cos is cosine of wind direction; N is the sample number.  

Since the training objective is to minimize the mean square error (MSE) of the network, the 

fitness function is defined as the follow46. 
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where ˆ
iy is the desired model output or the learning target – the measured wind farm power output. 

When fitness is close to 1, the requirement of network accuracy is thought to be reached. 

Table I Summary of WPF methods 

Forecasting Algorithm Implementing wind farm 



GA-BP Back propagation artificial neural network optimized by 

generic algorithm  

WF1~WF3 

RBF Radical basis function artificial neural network  WF1~ WF3 

SVM Support vector machine WF1~WF3 

 

a. Back propagation artificial neural network optimized by generic algorithm 

Back propagation (BP) neural network is a three-layer feed-forward network with a 

supervised learning mechanism, introduced by Rumelhart, and McCelland in 1986. It is trained 

based on an error back propagation algorithm and can learn any nonlinear mapping of input to 

target.  

There are two stages in BP learning process, which are input information forward 

propagation and error backward propagation. During forward stage, model input variables iX , 

including NWP wind speed and NWP wind direction, are transferred from the input layer, and 

then weighted by the hidden layer, finally to the output layer. The output of the BP network is the 

predicted wind power output calculated by the sigmoid transfer function. This output result is 

compared with the learning targets, which is the observed wind power. The inevitable training 

error returns backward along the network path from output layer through hidden layer to input 

layer so that the network parameters (connection weights and thresholds) of each layer can be 

adjusted. Network parameters of BP are randomly selected in the initial iteration, and then updated 

according to error response and improves the forecasting performance of the entire network. 

However, this random parameter selection might result in inappropriate training scale (excessive 

training or lack of training), local minimum problem or inefficient convergence, especially with 

large amount of training samples. 

Therefore, GA is used to evaluate the viability of the individual neural nodes and accordingly 

to direct the BP initial parameter and training process. In this way, the global search capability and 

the generalization of the BP network can be improved. The modeling process of BP optimization 

using GA is shown in Fig.1. 



 

FIG.1. Modeling process of the GA-BP neural network 

b. RBF neural network  

RBF neural network47,48 is a three-layer network that learns by measuring the Euclidean 

distance of data. It consists of an input layer, a single nonlinear hidden layer with nodes, and a 

linear output layer. There is no weight between input layer and hidden layer. This simple network 

structure is an advantage of the multilayered perceptron network for efficient training and 

forecasting. 

During the data processing, a hidden node represents one kernel functions and the hidden 

layer performs nonlinear transforms for the feature extraction. Output layer is a local kernel 

function with unit normalization which giving a linear and weighted sum of all the hidden nodes 

outputs. Gaussion function is generally used to quantify the relationship between the model input 

and the output of the jth node in the hidden layer, as shown in eq.(3). There are two parameters in 

kernel function determining the range of this kernel function effect, which are center and width. 

And the expected output of the network is shown in eq.(4).  
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where 1 2, ,...,
T

j j j jnC c c c    is the center vector of the jth neuron in the hidden layer;
 

1 2, ,...,
T

j       is the width vector;
 jw is the weight between the jth neuron of the hidden layer; 

M is the neuron number in the hidden layer.  

The weight parameter updates for minimizing the total fitting error as follow. 
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In this paper, Matlab toolbox is used to perform the training and testing. The modeling flow 



of the RBF model is shown in Fig.2. 

 
FIG.2. Modeling process of the RBF neural network 

C. Support vector machine  

The basic idea of support vector machine (SVM) 49 for forecasting is to map the input vector 

into a high-dimensional feature space by a nonlinear mapping function, and then to perform linear 

regression in the feature space. The following estimate function is used to make the prediction.  

    i if X w X b      
(6) 

where w is weight vector; b is the threshold value;  iX is the nonlinear mapping function.  

The function approximating problem is equivalent with the minimization of the risk function 

R, as shown below. 
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where c is the regularized constant determining the trade-off between the empirical error and the 

regularization term 
21
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is called Vapnik’s  -insensitive loss function and  is a 

measure for empirical error50. 
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The minimizing function can be written as the following form.  
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where 
*,i i  are Lagrange multipliers and 

* 0,i i   *, 0i i   for any 1,2,...,i l .

     ,i j i ik x x x x   is kernel function, which needs to satisfy Mercer’s condition. In SVM, 

it is generally computed by RBF kernel function as follow. 
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By introducing the slack variables
*,i i  , the risk function R can be rewritten to the 

following form. The slack variables are introduced when the data cannot be estimated under the . 
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In order to obtain the estimates of weights and threshold, a minimization function can be 

obtained with Lagrange multipliers and Karush-Kuhn-Tucker conditions as follow. 

 

 

        

*

* * * *

1 1 1

,

1
,

2

N N N N

i i i i i i i j j i j

i i i j

Min Lag

y k X X

 

        
  

        
 

(13) 

subject to: 
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The data points associating with
*, 0i i    are called support vectors. The key idea for 

SVM is to select the values of 
*,i i  for the data set ix . That is why the training sample effects 

on forecasting performance is significant to analyze.  

V. EVALUATION CRITERIA 

The deterministic WPFs are evaluated and compared on three aspects: prediction accuracy, 

computation efficiency and model adaptability. 

(1) The error criteria adopted in the performance evaluation of the deterministic WPF is 

Normalized root mean square error (RMSE). It gives a more representative evaluation of the 

forecasting error for the complete validation period51,52. 
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where, Pai is actual power output measurement at time of i. Ppi is predicted power at time of i. Cap 

is capacity of wind farm. n is number of model training samples.  

(2) Computation efficiency: The convergence times to train the WPF models are compared. 

All the cases are implemented on a computer where the configuration is CPU AMD X4830 

Processor, 2.80GHz. 



(3) Impacts of training samples: The impacts of training sample on forecasting accuracy are 

studied in terms of sample size, sample quality and the time scale of training samples. The training 

samples are built up with three time scales (year, season, and month). 

(4) Model adaptability. The adaptabilities of WPF methods in different terrains and climates 

are also examined by implementing each WPF model in three wind farms with distinct topography 

and climate patterns. 

VI. CASE STUDY 

a. Training sample impacts on WPF 

The GA-BP, RBF, and SVM models are adopted to conduct the short-term WPF with 

different training samples in three wind farms. The effects of training samples come from three 

aspects, as follow: sample number, accuracy of training sample (NWP), and time scale of training 

samples. The training samples are divided into 36 groups according to NWP speed absolute error 

and sample number. The summary of training samples is in Fig.3. The nomenclature of sample 

number for each wind farm is as follow: “Small”-500 samples (green bar); “Medium”-2000 

samples (blue bar); “Large”- 5000 samples (purple bar). 

 
FIG.3 Summary of training samples 

Fig.4 shows the forecasting RMSE with different numbers of training samples. To this end, 

the WPF models are established based on equivalent size of training samples. The blue curve 

represents samples of 1.1#, 2.1#, 3.1#, 4.1#, …, 12.1#. The red curve represents samples of 1.2#, 

2.2#, 3.2#, 4.2#,…, 12.2#. The green curve represents samples of 1.3#, 2.3#, 3.3#, 4.3#,…, 12.3#. 

X-axis is the representation of NWP wind speed error; and the NWP error is increasing from left 

to right. The training samples at the same x-axis position have the same NWP wind speed absolute 

error level. The results show that forecasting with 2000 training samples and 5000 training 

samples have very similar and relatively stable performance. Blue curves show more variable 

features, no matter what WPF algorithms are considered. Interesting to see that, the forecasts with 

perfect NWP (1.1#, 1.2# and 1.3#) do not obtain the best accuracy, although the curves show 

slightly upward trend with the increase of NWP error level. This verifies the contradiction effects 

between sample number and NWP accuracy. If the sample number cannot reach the minimum 



amount that model training requires, the forecasting accuracy is decreased even the wind speed 

forecasts are 100% accurate.  

 
(a)  

 
(b)  

 
(c)  

 
(b)  

 
(e)  

 
(f)  

 
(g)  

 
(h)  

 
(i)  

FIG.4 Influence of training sample size on forecasting accuracy. (a) GA-BP in 1#wind farm, (b) RBF in1 #wind 

farm, (c) SVM in1 #wind farm, (d) GA-BP in2 #wind farm, (e) RBF in2 #wind farm, (f) SVM in2 #wind farm, (g) 

GA-BP in3 #wind farm, (h) RBF in 3#wind farm, and (i) SVM in3 #wind farm 

To manifest the joint influence of sample number and sample accuracy, the forecasting model 

is established with mixes of NWP with different wind speed forecast error. Fig.5 is the average 

RMSE value of all wind farm power output forecasting. Specifically, the prediction accuracy of 

GA-BP increases as the training sample number increases. It means that GA-BP algorithm has 

larger demand for training samples at this stage. So, it is unsuitable for the modeling of new-built 

wind farms or areas with a wide variety of weather patterns. But, continuous increase of training 

samples would inversely lead to forecasting accuracy drops, and then the error levels off. This is 

because excessive samples arise the over-fitting problem. For RBF, the prediction accuracy also 

increases with the increase in training sample number. When the number of training samples is 

less than 500, the rising slope of RBF red curves are far greater than that of GA-BP. But with more 

than 500 samples, the RBF accuracy remains fairly constant. The prediction accuracy of SVM 

increases with the decreasing of training samples, however, it reduces rapidly when the training 

samples are less than 200. This verifies the forecasting capabilities of SVM with small amount of 

samples. 



 

FIG. 5 RMSE of various training sample numbers  

In order to investigate the relation between the model accuracy and time scale of training 

samples, the training data is classified by year, season and month as time intervals. The results of 

GA-BP, RBF and SVM with different time-scales training and testing are presented in Fig. 6. 

Constant sample size is used in the plots. The RMSE of the three models increases with the 

expanding time scale of training samples. It demonstrates that prediction models which are 

established with month as time interval can improve the prediction accuracy. This is mainly 

because the changing of the wind might follow specific rules in a certain month or season, which 

is beneficial for the prediction to build the model for each month or season. In other words, it is 

hard to grasp the meteorological features from representative samples in a long period of time 

because the wind and power generation performance would behave in various ways. 

 

FIG.6 Prediction RMSE with different time scale of training samples 

b. Modeling efficiency 

Fig.7 is the training time with GA-BP, RBF and SVM based WPF models. Overall, the 

training time of all WPF algorithms increase as the sample number increases. For GA-BP, the 

training time gains linearly as the forecasting accuracy linearly increases as well. It indicates that 

GA-BP sacrifices the modeling efficiency to forecasting accuracy. For RBF, the training time 

increases exponentially with increase of sample number. It means that RBF is not suitable for 

training with great amount of samples. Otherwise, its computational efficiency dramatically drops 

and the forecasting accuracy increases mildly. The training time of SVM increases exponentially, 

but its growth rate is lower than that of RBF. This validates its learning abilities and modeling 

efficiency. 



 

FIG.7 Training time with GA-BP, RBF and SVM forecasting models 

c. Adaptability to climates 

Fig.8 shows the prediction RMSE of 12 months of GA-BP, RBF and SVM in three wind 

farms. It is one month/season training, and one month/season prediction with error calculation. 

The variation trends in each figure are consistent. It shows that the prediction accuracy in spring 

(Mar., Apr., May) is lower than other seasons. This might be because that the weather in spring 

fluctuates frequently that the NWP accuracy is reduced. Meanwhile, the power output is higher 

due to abundant wind resources in spring, and this increases prediction error as well. 

Comparatively, RBF and SVM have good prediction accuracy in spring, which show their 

preferable generalization abilities. RBF does not have a higher demand for NWP accuracy, 

showing better adaptability in WF3. GA-BP gets a better predictive effect in Jun. and Aug. 

because of the small and stable wind conditions in summer. 

 

FIG. 8 Prediction RMSE of 12 months in three wind farms 

d. Variability effects on predictability 

Fig. 9 shows the linear dependency between three forecasting RMSEs (or predictability) and 

normalized wind power variability in three wind farms. The RMSE is based on forecast horizon of 

24 hours. In Eq. (16), the wind power variability is defined by the mean absolute 15 minute 

gradient of the measured power time series P(t) that serves also as training targets53. It is clear to 

see that larger variability leads to lower predictability, which reflects the seasonal effects on 

forecasting error distribution. 

    15minVariability P t P t    (16) 



 
FIG. 9 Correlation between variability and predictability (RMSE) in 12 months. 

e. Adaptability to the terrains 

The average RMSE of every model is shown in Table II. The three models meet the 

requirement of RMSE less than 20%. SVM has better prediction average accuracy of 10.54% in 

WF1 and 14.87% in WF2. This is because that both wind farms are flat and have complete met 

mast data as well as better NWP data. Due to the topological complexity of WF3 and lack of 

partial met mast data, the prediction performance of three models is all a little worse. Relatively, 

RBF has better prediction accuracy of 18.76% in WF3, owing to its strong adaptability. 

On the whole, RBF and SVM have a more accurate prediction than GA-BP. SVM is suitable 

for the wind farms with flat terrains and precise NWP data, especially coastal areas, whilst RBF 

shows advantages in those with complex terrains and worse NWP data. 

 

Table II Monthly average RMSE of GA-BP, RBF and SVM models in WF1, WF2 and WF3 

Model 
WF1 WF2 WF3 

RMSE/% RMSE/% RMSE/% 

GA-BP 10.92 15.87 19.99 

RBF 10.67 15.98 18.76 

SVM 10.54 14.87 18.90 

 

Fig.10 shows the predictive and actual value of wind farm power output with the three 

models over one random day (288 time moments). Except for GA-BP model in WF2 shown in 

Fig.10 (b), other prediction curves are primarily in accordance with the actual value, and the error 

between the predictive and the actual power output is small. However, three models, especially 

GA-BP, cannot track the sharp power changes accurately. This is related to the features of model 

learning as well as the NWP accuracy. For GA-BP, it has the drawback of becoming trapped into 

the local minimum. Although it can be improved by GA, it requires further optimization. 



 

FIG.10 24-h horizon predictive and actual value of wind farms power output in wind farms on one 

random day in (a) WF1, (b) WF2, and (c) WF3. 

VII. CONCLUSION 

In this paper, GA-BP, RBF and SVM methods are established and analyzed for prediction 

accuracy, computation efficiency and model adaptability. Based on the case study in China, 

following conclusions can be drawn: 

(1) Training sample effects. GA-BP and RBF have similar interaction effects from training 

sample number on forecasting accuracy. The prediction accuracy increases with the increase in 

training sample number. The change of sample number is less sensitive than that of SVM. GA-BP 

forecasting accuracy is equally sensitive to all size of training samples. With small training sample, 

the rising slope of RBF red curves is far greater than that of GA-BP. But with more samples, RBF 

accuracy remains constant. The prediction accuracy of SVM increases with the decreasing of 

training samples, however, it reduces rapidly with large training samples.  

(2) The size of the training sample for different forecasting algorithm has such a distinctive 

influence on forecasting performance. According to the training sample analysis in this paper, it is 

suggested that:  

 At least 7000-8000 samples should be used for GA-BP model training.  

 At least 800-1000 samples should be used for RBF model training to obtain an 

accuracy-efficiency balanced result. Around 7000 training samples can produce better 

accuracy, but the effect is marginal and the training time is increased. 

 At least 400-600 samples should be used for SVM model training. 



 To convert from sample number to calendar time, one has to use the proper sampling time 

and subtract the amount of unusable data due to missing measurements, invalid data, 

maintenance and curtailment, and 10-min samples would work the same way as hourly 

samples. 

 (3) Model adaptability to the terrains. SVM is suitable for the wind farms with flat terrains 

and precise NWP data, especially coastal areas. Whilst RBF shows advantages in those wind 

farms with complex terrain and worse NWP data. 

(4) Model adaptability to climates. RBF and SVM have good prediction accuracy in spring, 

while GA-BP is more suitable for summer. It is suggested to combine these three models 

depending on different seasons to increase the wind power prediction accuracy. 

(5) Model computation efficiency. SVM modeling requires less training samples and better 

NWP with high computational efficiency. It is suitable for the modeling of new-built wind farms 

or areas with various weather conditions. The RBF model is not suitable for training samples with 

too much data; otherwise its computational efficiency is too low. GA-BP with lower 

computational efficiency demands for larger training samples making it unsuitable for the 

modeling of new-built wind farms or areas with a variety of weather conditions. 

(6) Overall, RBF and SVM have better prediction performance than GA-BP, and prediction 

models which are established with one month samples at a time can improve short-term wind 

power prediction accuracy. 
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