18,835 research outputs found

    Microscopic study of induced fission dynamics of 226^{226}Th with covariant energy density functionals

    Full text link
    Static and dynamic aspects of the fission process of 226^{226}Th are analyzed in a self-consistent framework based on relativistic energy density functionals. Constrained relativistic mean-field (RMF) calculations in the collective space of axially symmetric quadrupole and octupole deformations, based on the energy density functional PC-PK1 and a δ\delta-force pairing, are performed to determine the potential energy surface of the fissioning nucleus, the scission line, the single-nucleon wave functions, energies and occupation probabilities, as functions of deformation parameters. Induced fission dynamics is described using the time-dependent generator coordinate method in the Gaussian overlap approximation. A collective Schr\"odinger equation, determined entirely by the microscopic single-nucleon degrees of freedom, propagates adiabatically in time the initial wave packet built by boosting the ground-state solution of the collective Hamiltonian for 226^{226}Th. The position of the scission line and the microscopic input for the collective Hamiltonian are analyzed as functions of the strength of the pairing interaction. The effect of static pairing correlations on the pre-neutron emission charge yields and total kinetic energy of fission fragments is examined in comparison with available data, and the distribution of fission fragments is analyzed for different values of the initial excitation energy.Comment: 25 pages, 14 figures, accepted for publication in Phys. Rev.

    The Necessary and Sufficient Conditions of Separability for Multipartite Pure States

    Get PDF
    In this paper we present the necessary and sufficient conditions of separability for multipartite pure states. These conditions are very simple, and they don't require Schmidt decomposition or tracing out operations. We also give a necessary condition for a local unitary equivalence class for a bipartite system in terms of the determinant of the matrix of amplitudes and explore a variance as a measure of entanglement for multipartite pure states.Comment: Submitted to PRL in Sep. 2004, the paper No is LV9637. Submitted to SIAM on computing, in Jan., 2005, the paper No. is SICOMP 44687. Under reviewing no

    Property P for knots admitting certain Gabai disks

    Get PDF
    We show that if a knot has a minimal spanning surface that admits certain Gabai disks, then a manifold obtained by ±1-Dehn surgery along the knot has infinite fundamental group. As one of the applications we extend and simplify a recent result of Menasco and Zhang that closed 3-braid knots have Property P. Other applications are given. © 2004 Elsevier B.V. All rights reserved

    No spin-localization phase transition in the spin-boson model without local field

    Full text link
    We explore the spin-boson model in a special case, i.e., with zero local field. In contrast to previous studies, we find no possibility for quantum phase transition (QPT) happening between the localized and delocalized phases, and the behavior of the model can be fully characterized by the even or odd parity as well as the parity breaking, instead of the QPT, owned by the ground state of the system. Our analytical treatment about the eigensolution of the ground state of the model presents for the first time a rigorous proof of no-degeneracy for the ground state of the model, which is independent of the bath type, the degrees of freedom of the bath and the calculation precision. We argue that the QPT mentioned previously appears due to unreasonable treatment of the ground state of the model or of the infrared divergence existing in the spectral functions for Ohmic and sub-Ohmic dissipations.Comment: 5 pages, 1 figure. Comments are welcom

    Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    Full text link
    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra and transition rates in fourteen isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ\delta-interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and non-relativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.Comment: 36 pages, 21 figures, Accepted for Publication in Physical Review

    Personal Goal Realization Form of Topology Analysis

    Full text link
    At first, this paper puts forward to the proposal of personal goal-achievement topology. Based on this, a number of topological concepts are given systematically, such as the open set, neighborhood, the neighborhood, closed set, closures, and connectivity, including their properties. Then explain the role, mechanism and meaning of them in this topology and provide a scientific reference for better achieving personal goals

    Stress and Emotion Classification Using Jitter and Shimmer Features

    Get PDF
    In this paper, we evaluate the use of appended jitter and shimmer speech features for the classification of human speaking styles and of animal vocalization arousal levels. Jitter and shimmer features are extracted from the fundamental frequency contour and added to baseline spectral features, specifically Mel-frequency cepstral coefficients (MFCCs) for human speech and Greenwood function cepstral coefficients (GFCCs) for animal vocalizations. Hidden Markov models (HMMs) with Gaussian mixture models (GMMs) state distributions are used for classification. The appended jitter and shimmer features result in an increase in classification accuracy for several illustrative datasets, including the SUSAS dataset for human speaking styles as well as vocalizations labeled by arousal level for African elephant and Rhesus monkey species

    The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    Get PDF
    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to identify the impact of ice processes, radiation and large-scale influence on cloud-aerosol interactive processes, especially regarding surface rainfall amounts and characteristics (i.e., heavy or convective versus light or stratiform types). In addition, an inert tracer was included to follow the vertical redistribution of aerosols by cloud processes. We will also give a brief review from observational evidence on the role of aerosol on precipitation processes

    Equivariant wave maps exterior to a ball

    Full text link
    We consider the exterior Cauchy-Dirichlet problem for equivariant wave maps from 3+1 dimensional Minkowski spacetime into the three-sphere. Using mixed analytical and numerical methods we show that, for a given topological degree of the map, all solutions starting from smooth finite energy initial data converge to the unique static solution (harmonic map). The asymptotics of this relaxation process is described in detail. We hope that our model will provide an attractive mathematical setting for gaining insight into dissipation-by-dispersion phenomena, in particular the soliton resolution conjecture.Comment: 16 pages, 9 figure
    corecore