884 research outputs found

    The impact of neutrino-nucleus interaction modeling on new physics searches

    Full text link
    Accurate neutrino-nucleus interaction modeling is an essential requirement for the success of the accelerator-based neutrino program. As no satisfactory description of cross sections exists, experiments tune neutrino-nucleus interactions to data to mitigate mis-modeling. In this work, we study how the interplay between near detector tuning and cross section mis-modeling affects new physics searches. We perform a realistic simulation of neutrino events and closely follow NOvA's tuning, the first published of such procedures in a neutrino experiment. We analyze two illustrative new physics scenarios, sterile neutrinos and light neutrinophilic scalars, presenting the relevant experimental signatures and the sensitivity regions with and without tuning. While the tuning does not wash out sterile neutrino oscillation patterns, cross section mis-modeling can bias the experimental sensitivity. In the case of light neutrinophilic scalars, variations in cross section models completely dominate the sensitivity regardless of any tuning. Our findings reveal the critical need to improve our theoretical understanding of neutrino-nucleus interactions, and to estimate the impact of tuning on new physics searches. We urge neutrino experiments to follow NOvA's example and publish the details of their tuning procedure, and to develop strategies to more robustly account for cross section uncertainties, which will expand the scope of their physics program

    Environmental Forensic Characterization of Former Rail Yard Soils Located Adjacent to the Statue of Liberty in the New York/New Jersey Harbor

    Get PDF
    Identifying inorganic and organic soil contaminants in urban brownfields can give insights into the adverse effects of industrial activities on soil function, ecological health, and environmental quality. Liberty State Park in Jersey City (N.J., USA) once supported a major rail yard that had dock facilities for both cargo and passenger service; a portion remains closed to the public, and a forest developed and spread in this area. The objectives of this study were to: 1) characterize the organic and inorganic compounds in Liberty State Park soils and compare the findings to an uncontaminated reference site (Hutcheson Memorial Forest); and 2) identify differences between the barren low-functioning areas and the forested high-functioning areas of the brownfield. Soil samples were solvent-extracted, fractionated, and analyzed by gas chromatography–mass spectrometry and subjected to loss-on-ignition, pyrolysis-gas chromatography–mass spectrometry, inductively-coupled-plasma mass spectrometry, and optical microscopy analyses. Compared to soil from the reference site, the forested soils in Liberty State Park contained elevated percentages of organic matter (30–45%) and more contaminants, such as fossil-fuel-derived hydrocarbons and coal particles. Microscopy revealed bituminous and anthracite coal, coke, tar/pitch, and ash particles. Barren and low-functioning site 25R had a similar organic contaminant profile but contained a higher metal load than other Liberty State Park sites and also lacked higher plant indicators. These can obscure the signatures of contaminants, and data from adjacent barren and vegetated sites are valuable references for soils studies. A deeper understanding of the chemistry, biochemistry, and ecology of barren soils can be leveraged to prevent land degradation and to restore dysfunctional and phytotoxic soils

    Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia.

    Get PDF
    Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.The serum cytokine studies were supported by a research grant from the Rosetrees Trust. NFØ was supported by grants from the Danish Lundbeck Foundation and Danish Cancer Society, J.G. was supported by fellowships from Bloodwise and the Kay Kendall Leukaemia Fund; and M.S.S. is the recipient of a Biotechnology and Biological Sciences Research Council Industrial Collaborative Awards in Science and Engineering PhD Studentship. Work in the R.C.S. laboratory was supported by grants from the Stiftung Blutspendezentrum SRK beider Basel, the Swiss National Science Foundation (31003A-147016/1 and 31003A_166613), and the Swiss Cancer League (KLS-2950-02-2012 and KFS-3655-02-2015). A.K. was supported by the Else Kröner-Fresenius Foundation. Work in the A.R.G. laboratory is supported by the Wellcome Trust, Bloodwise, Cancer Research UK, the Kay Kendall Leukaemia Fund, and the Leukemia and Lymphoma Society of America. Work in the D.G.K. laboratory is supported by a Bloodwise Bennett Fellowship (15008), a European Hematology Association Non-Clinical Advanced Research Fellowship, and an ERC Starting Grant (ERC-2016-STG–715371). D.G.K. and A.R.G. are supported by a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome MRC Cambridge Stem Cell Institute, the National Institute for Health Research Cambridge Biomedical Research Centre, and the CRUK Cambridge Cancer Centre

    Distribution of crustal types in Canada Basin, Arctic Ocean

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tectonophysics 691, Part A (2016): 8-30, doi:10.1016/j.tecto.2016.01.038.Seismic velocities determined from 70 sonobuoys widely distributed in Canada Basin were used to discriminate crustal types. Velocities of oceanic layer 3 (6.7 -7.1 km/s), transitional (7.2-7.6 km/s) and continental crust (5.5-6.6 km/s) were used to distinguish crustal types. Potential field data supports the distribution of oceanic crust as a polygon with maximum dimensions of ~340 km (east-west) by ~590 km (north-south) and identification of the ocean-continent boundary (OCB). Paired magnetic anomalies are associated only with crust that has oceanic velocities. Furthermore, the interpreted top of oceanic crust on seismic reflection profiles is more irregular and sometimes shallower than adjacent transitional crust. The northern segment of the narrow Canada Basin Gravity Low (CBGL), often interpreted as a spreading centre, bisects this zone of oceanic crust and coincides with the location of a prominent valley in seismic reflection profiles. Data coverage near the southern segment of CBGL is sparse. Velocities typical of transitional crust are determined east of it. Extension in this region, close to the inferred pole of rotation, may have been amagmatic. Offshore Alaska is a wide zone of thinned continental crust up to 300 km across. Published longer offset refraction experiments in the Basin confirm the depth to Moho and the lack of oceanic layer 3 velocities. Further north, towards Alpha Ridge and along Northwind Ridge, transitional crust is interpreted to be underplated or intruded by magmatism related to the emplacement of the High Arctic Large Igneous Province (HALIP). Although a rotational plate tectonic model is consistent with the extent of the conjugate magnetic anomalies that occupy only a portion of Canada Basin, it does not explain the asymmetrical configuration of the oceanic crust in the deep water portion of Canada Basin, and the unequal distribution of transitional and continental crust around the basin.Funding for this work was provided through the Geological Survey of Canada as part of the Canada’s Extended Continental Slope (ECS) Program. Funding for this work was also provided in part through the U.S. Geological Survey as part of the U.S. ECS Project.2018-02-0
    corecore