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Highlights 

• We characterized organic and inorganic substances at a major urban brownfield site 
• We detected abundant petroleum- and coal-derived biomarkers and PAHs in the soil 
• Both barren low-functioning and forested soils contained similar organic compounds 
• The barren site featured very high heavy metal loads and dormant microbial life 
• Chemical and ecological studies are critical to brownfield restoration efforts 
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Abstract1 

Identifying inorganic and organic soil contaminants in urban brownfields can give insights into 2 

the adverse effects of industrial activities on soil function, ecological health, and environmental 3 

quality. Liberty State Park in Jersey City (N.J., USA) once supported a major rail yard that had 4 

dock facilities for both cargo and passenger service; it was later closed off to the public, and a 5 

forest developed and spread in the area. The objectives of this study were to: 1) characterize the 6 

organic and inorganic compounds in Liberty State Park soils and compare the findings to an 7 

uncontaminated reference site (Hutcheson Memorial Forest); and 2) identify differences between 8 

the barren low-functioning areas and the forested high-functioning areas of the brownfield. Soil 9 

samples were solvent-extracted, fractionated, and analyzed by gas chromatography-mass 10 

spectrometry and subjected to loss-on-ignition, pyrolysis-gas chromatography-mass 11 

spectrometry, inductively-coupled-plasma mass spectrometry, and optical microscopy analyses. 12 

Compared to soil from the reference site, the forested soils in Liberty State Park contained 13 

elevated percentages of organic matter (30–45 %) and more contaminants, such as fossil-fuel-14 

derived hydrocarbons and coal particles. Microscopy revealed bituminous and anthracite coal, 15 

coke, tar/pitch, and ash particles. Barren and low-functioning site 25R had a similar organic 16 

contaminant profile but contained a higher metal load than other Liberty State Park sites and also 17 

lacked higher plant indicators. These can obscure the signatures of contaminants, and data from 18 

adjacent barren and vegetated sites are valuable references for soils studies. A deeper 19 

understanding of the chemistry, biochemistry, and ecology of barren soils can be leveraged to 20 

prevent land degradation and to restore dysfunctional and phytotoxic soils. 21 

22 
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Keywords: Brownfield, heavy metals, polycyclic aromatic hydrocarbons, soil forensics, 23 

pyrolysis-GC-MS, petrography, industrial barrens24 

25 

1. Introduction26 

Past industries have altered ecosystems by introducing inorganic and organic contaminants into 27 

soils (Alker et al., 2000; Gallego et al., 2016; Qian et al., 2017; Thornton et al., 2008). 28 

Specifically, former rail yard soils remain contaminated years after operations have ceased 29 

(Jackson, 1997).  Loading, unloading, and the train engines themselves can introduce both 30 

inorganic compounds such as heavy metals and organic contaminants including polycyclic 31 

aromatic hydrocarbons (PAHs) into the soil (Jackson, 1997; Lacey and Cole, 2003; Liu et al., 32 

2008; Malawska and Wilkomirski, 1999; Malawska and Wiłkomirski, 2000; Malawska and 33 

Wiołkomirski, 2001; Wiłkomirski et al., 2011).  Organic contaminants can originate from 34 

lubricating oils, coal, oil, fertilizers and herbicides (Biache et al., 2017; Wiłkomirski et al., 35 

2011).  PAHs, many of which are toxic or mutagenic to humans, plants, and animals, (Brooks, 36 

2004; Smith et al., 2006) can originate from incomplete combustion of coal (Haritash and 37 

Kaushik, 2009). 38 

 Liberty State Park (LSP) in Jersey City, New Jersey is located across the Hudson River 39 

from lower Manhattan and the Statue of Liberty and once supported a rail yard (Fig. 1A). 40 

Originally, LSP consisted of mudflats and salt marsh but was later filled in with New York City 41 

construction debris and municipal waste to prepare for the construction of the Central Railroad of 42 

New Jersey. The railroad was built between 1860 and 1919, operated until 1967, and was closed 43 

in 1970 (Gallagher et al., 2008a).  Part of LSP was remediated but a 100-ha un-remediated site, 44 

our study area, was fenced to restrict public access. Despite its history of contamination, most 45 
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areas within our un-remediated study site support a biodiverse and productive forest (Gallagher 46 

et al., 2008a).  Figure 1C shows the locations of our sites within the study area (43, 146, and 25).  47 

The organic compounds at LSP had not been previously analysed but coal fragments are visible 48 

throughout the site.  49 

We previously discovered high enzyme activities at LSP site 146, which has high heavy 50 

metal loads (Hagmann et al., 2015).  This finding was surprising because heavy metal and 51 

organic contaminants are often thought to decrease soil microbial functioning (Alisi et al., 2009; 52 

Buettner and Valentine, 2011; Hamdi et al., 2007; Sprocati et al., 2012). Because organic 53 

contaminants can play a role in soil functioning (Baran et al., 2004; Shen et al., 2005) and 54 

display additive effects in combination with heavy metals (Maliszewska-Kordybach and 55 

Smreczak, 2003; Shen et al., 2005), we identified organic contaminants at different sites within 56 

LSP that might lead to differences in enzymatic activities.  It is important to study both inorganic 57 

and organic compounds to understand historic industrial activities (Ortiz et al., 2016a). 58 

Figure 1 59 

The use of pyrolysis gas chromatography – mass spectrometry (Py-GC-MS) is only 60 

beginning to see wide application in characterization of brownfield contaminants (Kruge, 2015; 61 

Kruge et al., 2018; Lara-Gonzalo et al., 2015).  Here we studied LSP soils via Py-GC-MS and 62 

GC-MS combined with organic petrography and determination of soil enzyme activities, major 63 

and trace elements, total organic matter, and microbial counts.  This unique combination of 64 

methods, including the concurrent identification of organic and inorganic pollution with 65 

measurements of enzymatic function and microbial counts, provides a multidimensional 66 

understanding of the contaminants in LSP soils. 67 



Fig. 1. Liberty State Park is located in Jersey City, New Jersey (a). Aerial images from: U. S. 
Geological Survey: 1954 (b, e) and 2014 (c). Study sites within LSP are indicated on the map 
(43, 146, 25F, 25R). A historical photograph of 25F and 25R from 1951 (d). Sites 25F and 
25R are located next to each other; 25R is in a strip of land without vegetation (f). Photo 
Credits: d: Andrew Bologovsky  f: Mike Peters Montclair State University.  Photos used with 
permission. 
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Sites were chosen in LSP and at the reference site at Hutcheson Memorial Forest (HMF) 68 

that would allow us to answer questions about the impact of industrial activities and vegetation 69 

on organic contaminant profiles in the soils. Soils were characterized at four sites (43, 146, 25F, 70 

and 25R) within the un-remediated and closed-off LSP area.  Our first hypothesis was that there 71 

will be more fossil fuel biomarkers at LSP compared to HMF. According to historic photographs 72 

shown in Figure 1B, sites 43 and 146 lie along tracks to a coal pier while sites 25F and 25R are 73 

located next to each other and along the route to “Pier 11” (Fig. 1D).  All LSP sites have a 74 

history of industrial contamination while the reference site HMF does not. Site 25R lacks plants 75 

while the other three LSP sites (43, 146, and 25F) and reference site are vegetated.  Our second 76 

hypothesis was that the barren site 25R will have more or different contaminants compared to the 77 

forested sites at LSP. Our two primary objectives were to:  1.) characterize the organic and 78 

inorganic compounds at LSP and compare the findings to a reference site HMF; and 2.) identify 79 

differences between the barren site 25R (area with no vegetation) and forested areas at LSP.  80 

81 

2. Methods82 

2.1 Site description 83 

Soil samples were collected from four sites located within an un-remediated, restricted-access, 84 

100-ha plot within LSP, Jersey City, NJ, USA (40° 42” 16 N, 74° 03’ 06 W, Fig. 1A, B). LSP85 

was formerly a major rail yard and dock facility built on estuarine marshland and was abandoned 86 

around 1969 (Gallagher et al., 2008a).   In the intervening decades, dense forest cover took over 87 

the restricted access plot without human intervention.  88 

Soils for this study were collected from three different vegetated sites within LSP, 89 

including 43, 146, and 25F (Fig. 1C). A fourth site—25R that is adjacent to 25F—is on a strip of 90 
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land that remains anomalously barren (Fig. 1F). As a reference, soil was also collected from a 91 

location within HMF in Franklin Township, N.J—an abandoned agricultural field with no history 92 

of industrial use or contamination about 60 km southwest of LSP—having the same natural 93 

successional timeframe. 94 

95 

2.2 Soil collection and preparation 96 

Soil was collected in July 2016 from LSP sites 25F, 25R, 43, and 146 as well as the reference 97 

site HMF.  For this study, five samples were collected along a transect at intervals of 4 m for this 98 

study into separate bags (depth of 10 cm below the leaf-litter).  The samples were stored in a 99 

refrigerator (4 qC).  At the lab the soils were sieved through a 2-mm sieve and equal amounts of 100 

the five samples along a transect were combined into one bag labelled with the transect name and 101 

site (e.g., 43A).  At each site, five samples were collected along three parallel transects 10 m 102 

apart.  Thus, fifteen soil subsamples from a 16 by 20 m field grid were combined into three 103 

composite samples (one for each transect), as seen in Figure 2.  For each site, the three 104 

composites samples were submitted separately for laboratory analysis.  Figure 2 shows an 105 

overview of the experimental procedures we used to determine the organic composition of the 106 

soils as described in sections 2.4 and 2.5. 107 

108 

2.3 Percent organic matter 109 

The percent organic matter was determined by loss on ignition (LOI).  This procedure is 110 

described in Hagmann et al. 2015.  Briefly, soil was dried at 70qC for 24 hours.  The soil was 111 

ground using a mortar and pestle and samples were heated to 550qC for 4 hours.  The percent 112 
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organic matter was determined gravimetrically.  Results are presented as the mean values of the 113 

three composite soil samples taken at each site. 114 

115 

2.4 Extraction, LC fractionation and GC-MS116 

For each site, only one analysis was performed, on a global sample combining each of the three 117 

transect composites (Section 2.2) in equal measure.  Dry soil samples < 2 mm (7.8 – 11.0 g dry) 118 

underwent solvent extraction as described in Lara-Gonzalo et al. 2015.  Briefly, soils were 119 

extracted using dichloromethane:methanol (3:1, v/v) in a Soxtherm system (Gerhardt analytical 120 

systems: Königswinter, Germany). The extract was concentrated by rotary evaporation. Aliquots 121 

of the Soxtherm extract were fractionated and gravimetrically quantified by open column liquid 122 

chromatography (LC). First, maltenes and asphaltenes were separated by filtering through 0.45 123 

μm filters using hexane and dichloromethane, respectively; then, maltenes were fractionated into 124 

three fractions by LC in columns filled with silica gel and alumina. Fraction 1 (predominantly 125 

aliphatic hydrocarbons) was eluted with hexane, Fraction 2 (predominantly aromatic 126 

hydrocarbons) with a mix of dichloromethane:hexane (7:3, v/v) and finally, Fraction 3 127 

(predominantly polar compounds) with dichloromethane:methanol (1:1, v/v). 128 

Figure 2 129 

The analysis of the LC fractions was carried out by GC/MS. The injection of the extracts was 130 

performed on a GC/MS QP-2010 Plus (Shimadzu: Kyoto, Japan).  A capillary column DB-5ms 131 

(5% phenyl 95% dimethylpolysiloxane; 60 m × 0.25 mm i.d. × 0.25 μm film) from Agilent 132 

Technologies was used with helium as carried gas at 1 mL/min. The initial oven temperature was 133 

50 ºC (held for 2 min) and ramped at 2.5 ºC min-1 up to 310 ºC and held for 45 min. The mass 134 

spectrometer was operated in electron ionization mode (EI) at 70 eV. It was calibrated daily by 135 



     
 
Fig. 2. Flow chart illustrating the experimental design for the experiment. 
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autotuning with perfluorotributylamine (PFTBA) and the chromatograms were acquired in full-136 

scan mode (mass range acquisition was performed from 45 to 500 m/z).  Compounds were 137 

identified using the NIST 2014 Mass Spectral Library (NIST 2014/EPA/NIH) and by reference 138 

to the literature. 139 

140 

2.5 Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) 141 

For samples HMF, LSP 43, and LSP 146, Py-GC-MS was performed using a CDS Analytical 142 

5000 Pyroprobe (Oxford, Pennsylvania, USA) coupled to a Thermo Electron DSQ GC/MS 143 

(Madison, Wisconsin, USA) equipped with an Agilent DB-1MS column (30 m × 0.25 mm i.d. × 144 

0.25 μm film thickness). The GC oven temperature was programmed from 50 °C to 300 °C (at 5 145 

°C min-1), with an initial hold of 5 min at 50 °C and a final hold of 15 min at 300 °C. Pyrolysis 146 

was performed for 20 s at 610 qC. The MS was operated in full scan mode (50-500 Da, 1.08 147 

scans s-1).  Quality control was performed by separately analyzing the three composited samples 148 

from each site (Section 2.2).   For each site, the three yielded very similar results; therefore, only 149 

one was used to represent the site in this paper.  Compounds were identified using the NIST MS 150 

library and by reference to the literature. 151 

152 

2.6 Organic petrography 153 

For petrographic analysis, soil samples were mixed with Lucite powder and prepared into pellets 154 

in a Leco PR-15 mounting press. A GPX200 grinder/polisher was used to polish the samples 155 

according to the standard sample preparation techniques (Taylor et al., 1998). A reflected light 156 

microscope Leica DM 2500P linked to a TIDAS PMT IV photometric system was used to 157 

determine petrographic composition of the samples by counting 500 points, and the results were 158 
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recalculated into volume percent. Representative photomicrographs were taken of each sample 159 

using the same microscope. Coal, coke, tar and pitch, fly ash/bottom ash, sediments, and other 160 

materials were the petrographic categories counted, and each category included several 161 

components identified based on their optical characteristics. 162 

163 

2.7 Elemental analysis 164 

The concentrations of selected elements were determined using a Thermo iCAP Qc inductively 165 

coupled plasma mass spectrometry (ICP-MS, Thermo Fisher Scientific, Bremen, Germany).  The 166 

soil was extracted following EPA method 3050B, which is described in Hagmann et al. (2015).  167 

Briefly, 5 mL of 50% HNO3 was added to a 0.5 g homogenized sample.  The solution was heated 168 

to 95 r 5 qC for 15 minutes.  After the sample cooled down, 2.5 mL of concentrated HNO3 was 169 

added to the solution and the sample was heated 95 r 5 qC for 30 minutes.  This step was 170 

repeated if brown fumes were present.  Afterwards, the sample remained at 95 r 5 qC until the 171 

volume was reduced to approximately 2.5 mL.  DI (1mL) water was then added to the solution 172 

and drops of 30 % H2O2 (1.5 mL) were added.  Further amounts of 30% H2O2 were added until 173 

effervescence was minimal.  The sample remained at 95 r 5 qC until the volume dropped to 2.5 174 

mL.  The volume was brought up to 50 mL with DI water.  The solution was then filtered 175 

through a 1 Pm filter.  Each sample was further diluted to run on the ICP-MS.  Samples were 176 

diluted to at least 20 times to minimize the matrix effect. An aqueous standard curve was 177 

prepared for Li, Mg, Al, P, K, Ca, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Ba and Pb 178 

from a stock solution. 179 

180 

181 



9 

2.8 Acridine orange direct count (AODC) 182 

Bacterial cell density was measured using epifluorescence microscopy after staining the soil 183 

suspensions with acridine orange.  Briefly, soil samples were suspended in phosphate buffered 184 

saline (PBS) (0.0088 M Na2HPO4, 0.0013 M NaH2PO4 x H2O,  0.15 M NaCl; pH 7.6) and fixed 185 

in formalin.  The fixed samples were then serially diluted in PBS with a final dilution of 10-3. 186 

The diluted samples were then stained with 0.1 % acridine orange and transferred on a black 187 

polycarbonate 0.2 µm IsoporeTM membrane filter (Millipore, Waltham, M.A.) and observed 188 

under an epifluorescence microscope with a 100X objective lens (Nikon eclipse Ti-S) (Hobbie et 189 

al. 1977, Krumins et al. 2009). 190 

191 

2.9 Phosphatase assay 192 

Phosphatase enzyme activity was measured for soil from each site as described in Hagmann et al. 193 

2015.  Briefly, moist soil (0.1 g) was added to 100 mL of 0.1 M MES buffer (pH 6.0) and then 194 

sonicated for 3 min at 25W.  The slurry was stirred continuously, and each sample was added to 195 

the well (160 PL).  4-MUB-phosphate was added (40 PL) to three different wells (350 PM in the 196 

well).  The concentration was determined by preparing a standard curve using different 197 

concentrations of 4-MUB (0, 500, 1000, 1500 and 2500 pmols).  Time points were collected on a 198 

microplate reader at 30 qC every 20 minutes for 6 hours to measure fluorescence intensity (320 199 

nm ex./450 nm em.).200 

201 

202 

203 

204 
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3. Results and discussion205 

3.1. Bulk organic matter content 206 

The soil from the reference site HMF has an organic matter content of 7.4 % (by LOI), similar to 207 

typical forested soils in New Jersey (Table 1) (Osman, 2013).  It should be noted that the solvent 208 

extraction were conducted on soil particles that were less than 2 mm in diameter.  In contrast, 209 

forested LSP sites 43, 146, and 25F are unusually enriched in organic matter (30 - 45 %) 210 

compared to typical New Jersey soils.  Compared to the other LSP sites, the barren LSP site 25R 211 

has a lower percentage of organic matter (10.8 %). The reference soil from HMF and barren 25R 212 

soil have low solvent extract yields (1.3 and 1.2 g/kgsoil, respectively), compared to the forested 213 

LSP sites 43, 146 and 25F, which yielded 7.3 to 9.8 g/kgsoil.   Asphaltenes, higher molecular 214 

weight compounds (500 - 1,000 or more Da) (Lewan et al., 2014), are dominant in the soils from 215 

HMF and LSP sites 43, 146 and 25F, composing > 70 % of the extracts. Fraction 3 216 

(predominantly polar compounds) is also prevalent (14 – 22 %) in these same soils (Table 1).  217 

Site 25R is distinctive: in addition to the low extract yield, it contains only 47 % asphaltenes and 218 

considerably more saturated hydrocarbons (Fraction 1, 17.6 %) than the other samples. 219 

Table 1 220 

The forested sites at LSP (43, 146 and 25F) contain both biological materials and 221 

contaminants. The additional organic matter and extract yield in soils from these sites is likely 222 

because of augmentation by fossil fuel materials.  LOI measurements alone cannot distinguish 223 

between coal and natural soil organic matter (Ball, 1964). However, we do indeed commonly see 224 

chunks of coal in the LSP soils, which must obviously contribute to the elevated organic matter 225 

at LSP.  Samples HMF and 25R contain less soil organic matter and extract, but HMF is 226 

forested, while 25R is barren (Fig. 1).  The lower organic matter content and extract yield at 25R 227 



Table 1. Organic matter content (%, mean ± SE; n = 3), extraction and liquid 
chromatographic results from HMF, 43, 146, 25F and 25R soils.  Fraction 1 contains 
saturated hydrocarbons; fraction 2 – aromatic compounds and long chain (> C27) normal 
alkanes; fraction 3 – polar compounds. The data show that soil from site 146 has the highest 
percent organic matter.  The LC results show the percent of the total extract as well as yield 
per kg of dry soil.   
 

Sample 
Organic 
Matter 

 (% of soil) 

Extract 
yield 

(g/kgsoil) 

Fraction 1 
mg/kgsoil 

(% of 
extract) 

Fraction 2 
mg/kgsoil 

(% of 
extract) 

Fraction 3 
mg/kgsoil 

(% of 
extract) 

Asphaltenes 
mg/kgsoil 

(% of 
extract) 

HMF 7.43 ± 0.63 1.28 43.0 
(3.3) 

52.0 
(4.0) 

287 
(22.1) 

918 
(70.6) 

LSP 43 29.8 ± 0.86 9.21 451 
(4.9) 

506 
(5.5) 

929 
(10.1) 

7,314 
(79.5) 

LSP 146 44.8 ± 2.18 9.83 549 
(5.6) 

451 
(4.6) 

1421 
(14.5) 

7,379 
(75.3) 

LSP 25F 31.6 ± 4.79 7.38 429 
(5.8) 

363 
(4.9) 

1,095 
(14.8) 

5,513 
(74.5) 

LSP 25R 10.8 ± 1.94 1.21 211 
(17.6) 

119 
(9.9) 

307 
(25.6) 

563 
(46.9) 
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likely results from the lack of vegetation because plants provide constant organic inputs into the 228 

soil and obviously 25R soil does not receive these inputs.  The organic matter content at HMF is 229 

normal for a forested soil and simply lacks the supplemental increment because of the 230 

contamination found at LSP.   We note that the asphaltene contents of the forested LSP sites are 231 

high and further work must be done to characterize the asphaltenes, for example, by Py-GC-MS.  232 

233 

3.2. Py-GC-MS 234 

Pyrolysis-GC-MS results (Table 2 and Fig. 3) showed that the reference site HMF contains 235 

organic compounds found in typical forest soils including lignin [L1], polysaccharide [P1, P2, 236 

P3, P4], and protein biomarkers [N2] (Fig. 3 A).  Reference site HMF also contains low-weight 237 

aromatic hydrocarbons [A1, A2, A4] and phenols [F1, F2, F3, F4] (Fig. 3 A).  Vegetated LSP 238 

sites 43, 146, and 25F contain the compounds present in HMF. These sites also contain PAHs 239 

such as naphthalenes and phenanthrenes, where both parent and alkylated forms are present, 240 

fluoranthene (Fig. 3 B), as well as dibenzofuran [DBF] and methyldibenzofuran [DBF1].  The 241 

chromatogram of barren LSP site 25R shows a notable absence of organic compounds with a 242 

biological derivation [e.g., L1, L2 etc.] and thus predominantly aromatic compounds are seen in 243 

the trace.  The aromatic compounds seen at site 25R are also present in similar proportions at the 244 

other LSP sites (Fig. 3).  245 

Table 2 246 

Figure 3 247 

The presence of polysaccharides, lignin, and proteins in HMF was expected because 248 

these compounds indicate plants and microorganisms in the soil (e.g. Hempfling and Schulten, 249 

1990).  These compounds are also present in vegetated LSP sites 43, 146, and 25F but not at 250 



Fig. 3. Total ion current (TIC) for Py-GC-MS of soil samples from sites HMF (A), 43 (B), 
146 (C), 25F (D) and 25R (E).  The data for 25R show predominantly mono- and polycyclic 
aromatic hydrocarbons and aromatic hydrocarbons. See Table 2 for compound symbols. 
 

  



Table 2: Symbols for peak identification used in Figures 1-7. 
Aliphatic Hydrocarbons 

Numerals    normal alkanes 
Pr     pristane 
Ph     phytane 
Hx     hopanes (x is the carbon number) 
Ts     18a(H)-22,29,30-trisnorhopane 
Tm     17a(H)-22,29,30-trisnorhopane 
TRx     tricyclic terpane  
Aromatic Compounds 

Alkylated aromatic compounds, “x” is degree of substitution 
A1     benzene 
A2     toluene 
A3     m-xylene & p-xylene 
A4     styrene 
A5     biphenyl 
NAP     naphthalene 
NAPx     alkylnaphthalene isomers 
PHN     phenanthrene 
PHNx     alkylphenanthrene isomers 
ANT     anthracene 
FLA     fluoranthene 
FLU     fluorene 
FLON     9H-fluoren-9-one 
PYR     pyrene 
PYRx     alkypyrene isomers 
CHR     chrysene 
CHRx     alkylchrysene isomers 
BAN     benzo[a]anthracene 
BNT     benzonapthothiophene 
BFLA     benzofluorene 
DBF     dibenzofuran 
DBFx     alkyldibenzofuran isomers 
DBT     dibenzothiophene 
Polysaccharide Marker Compounds 
P1     cyclopentenone 
P2     furfural 
P3     3-methylcyclopentenone 
P4     methylfurfual 
P5     levoglucosan 
Phenolic Compounds 
F1      phenol 
F2     2-methylphenol 
F3      3-methylphenol & 4-methylphenol 
F4     vinylphenol 
 
 



 
Table 2. (continued) 
Lignin Marker Compounds 
L1     guaiacol 
L2     methylguaiacol 
L3     ethylguaiacol 
L4     vinylguaiacol 
L5     syringol 
L6     vanillin 
L7     trans iso-eugenol 
L8     acetovanillone 
L9     vinylsyringol 
L10     prop-1-enyl syringol 
L11     prop-2-enyl syringol (trans) 
L12     acetosyringone 
Fatty Acid 
FA1     n-hexadecanoic acid 
FA2     n-octadecanoic acid 
FA3     methyl ester (E) 9-octadecanoic acid 
FA4     octadecanoic acid, butyl ester 
Nitrogen Compounds 
N1     benzonitrile 
N2     benzeneacetonitrile 
N3     indole 
N4     diketodipyrole 
Steroid 
S1     C29 steradiene      
S2     cholest-5-en-3-ol 
S2     ergost-5-en-3-ol 
S3     γ-stigmasterol 
S4     stigmast-5-en-3-ol 
S5     stigmastanol 
S6     stigmast-4-en-3-one 
Plasticizer 
X1     diisobutyl phthalate  
X2     1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester 
Other Compounds 
B1      abietane derivative 
B2     b-amyrin derivative 
B6     diploptene 
B13 totarol 
B14      1-heptacosanol 
B15      3b-methoxy-D-friedoolean-14-ene 
B16      olean-12-en-3-one 
B17      lupeol 
B18, B19     dammarane isomers 
B20      cyclolaudenol 
B21      lup-20(29)-ene-3,28-diol 
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barren site 25R.  The pyrolyzates of the LSP sites 43, 146 and 25F soils have similar organic 251 

compositions to each other, which is not surprising because they are all vegetated and located 252 

within the same brownfield.  The PAHs present at LSP sites indicate fossil fuel contamination 253 

and include naphthalenes, fluoranthene, and fluorene, and heterocyclic compounds, such as 254 

dibenzofuran.  One likely source is coal, particles of which are evident to the naked eye in the 255 

park soils, and it is known that the presence of coal in the soil can increase the amount of 256 

aromatic compounds including PAHs (Kögel-Knabner, 2000; Laumann et al., 2011; Nádudvari 257 

et al., 2018; Stout and Emsbo-Mattingly, 2008).  258 

One example of coal indicators include dibenzofuran and methyldibenzofuran 259 

(Nádudvari et al., 2018).  In contrast to the other sites, 25R pyrolyzate shows a strong 260 

predominance of aromatic compounds.  These aromatic compounds include monoaromatic 261 

hydrocarbons such as BTEX (benzene [A1], toluene [A2], ethylbenzene, xylene [A3]) and 262 

polycyclic aromatic hydrocarbons (PAHs) [NAP, PHN, FLA, PYR, CHR, BAN].  Compared to 263 

the other LSP sites, the different organic composition at site 25R can be largely attributed to the 264 

absence of plants at 25R.  Organic compounds at forested LSP soils come from vegetation or 265 

industrial sources and compounds originating from plants can obscure signatures of 266 

contaminants (Ortiz et al., 2016b). With many of the plant and microbial indicators missing, the 267 

PAH indicators are more clearly visible in the 25R total ion current (TIC) trace. Our findings 268 

indicate that the organic contaminant profile of site 25R is similar to the other LSP sites. This 269 

suggests that the lack of plants at site 25R is not a result of differences in organic contaminant 270 

composition. 271 

272 

273 



13 

3.3. Solvent extractable organic matter 274 

3.3.1. Fraction 1 (saturated hydrocarbons) 275 

The saturated chromatograms (Fig. 4) contain two different sub-groups, normal isoprenoids (m/z 276 

71) and triterpenoids (m/z 191).  The distributions of saturated hydrocarbons indicate that the277 

soil of reference site HMF soil is distinctly different from soils from the four LSP sites (Fig. 4, 278 

Supp. Fig. S1).  The HMF samples show a predominance of two higher plant triterpenoid 279 

biomarkers, diploptene [B2] and a β-amyrin derivative [B6] as well as the long-chain, odd 280 

carbon number alkanes n-C29 and n-C31 (Figs. 4A and 5A). For soil samples 43, 146, and 25F, 281 

we see a lower relative abundance of the two biomarkers [B2] and [B6] compared to HMF and a 282 

broader range of odd-carbon number n-alkanes (C24 – C31) (Fig. 4B-D, Fig. 5 B-D and Supp. Fig. 283 

S1). The C27 – C35 triterpenoid and isoprenoid alkanes are prominent in soils 43 and 146 (Fig. 4 284 

B-D). The chromatogram for barren site 25R shows a distinctive “baseline hump”, indicating an285 

unresolved complex mixture (UCM) of hydrocarbons (Fig. 4 E). Hopanes are relatively more 286 

abundant in site 25R compared to the other sites, however, the biomarkers [B2] and [B6] are not 287 

detected (Fig. 4 E). 288 

Figure 4 289 

There is notably more pristane [Pr] than phytane [Ph] at all LSP sites having 290 

pristane/phytane (Pr/Ph) ratios of ca. 3.  In LSP soils, pristane was found more abundant than n-291 

C17 and phytane was found to be less abundant than n-C18 (Fig. 4, Table 3, Supp. Fig. S1). 292 

Hopanes (m/z 191) are key compounds found in contaminated LSP sites (Fig. 5) and were not 293 

found in the reference site HMF (Fig. 5 A).  Soils from 25R do not show the biomarkers [B2] 294 

and [B6], likely owing to the absence of plant biomass or low numbers of soil microbes. 295 

296 



 
Fig. 4. Total ion current (TIC) for fraction 1 of soil extracts from sites HMF (A), 43 (B), 146 
(C), 25F (D) and 25R (E). The data show distributions of alkanes (normal isoprenoids (m/z 
71) and triterpenoids (m/z 191). See Table 2 for compound symbols. 
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Table 3 297 

Figure 5 298 

The presence of pristane, phytane, hopanes, tricylclic terpanes, sesquiterpanes and 299 

steranes in LSP soils indicates fossil fuel contamination (Fig. 4, Supp. Fig. S2 and S3) (Killops 300 

and Killops, 2005; Peters et al., 2005; Wang and Fingas, 2003; Wang and Stout, 2010; Wang et 301 

al., 2005). The distribution of these compounds is similar in all samples analyzed, which 302 

indicates a similar blend of contaminating hydrocarbons at the four LSP sites. Hopanes, clearly 303 

visible in Figures 4 and 5, suggest the presence of heavy petroleum products such as fuel or 304 

lubricating oil in addition to coal (Peters et al., 2005). The reference site HMF does not contain 305 

hopanes, consistent with HMF soils containing less contamination compared to LSP. These 306 

findings support our first hypothesis that we will find more fossil fuel contaminants in LSP 307 

compared to HMF.  The reference site HMF also yielded less of Fraction 1 (43.0 mg/kgsoil) 308 

compared to all LSP sites, where yields range from 211-549 mg/kgsoil.  The high Pr/Ph ratios at 309 

LSP sites (> 2.7) are consistent with the presence of bituminous coal (Table 3) (Peters et al., 310 

2005; Powell and McKirdy, 1973).  The main railroad lines through sites 146 and 43 transported 311 

coal from Pennsylvania to a coal pier to go to New York City (Fig. 1) (Caldes, 2010; French, 312 

2002). Other railroad lines were directed to sites 25R and 25F and carried other cargo, however 313 

all railroad tracks had locomotives that could spill coal. Our C27-C28-C29 sterane ternary diagram 314 

pairs sites based on proximity to each other, for example, soils from sites 43 and 146 have higher 315 

abundance of C29 compared to soils from 25R and 25F (Supp. Fig. S4) (Peters et al., 2005). The 316 

GC-MS data on the saturated fraction reflects the presence of both coal and petroleum products 317 

at LSP.  318 



Table 3. Carbon preference index (CPI), odd even predominance (OEP), pristine/phytane 
(Pr/Ph), Pr/C17, Ph/C18, and weighted average carbon number of HMF, 43, 146, 25F and 
25R are shown. 

Sample CPI OEP Pr/Ph Pr/C17 Ph/C18 

weighted 
average 
carbon 
number 

HMF 2.573 2.782 0.634 2.464 2.137 26.33 
43 4.726 4.480 3.533 2.667 0.539 23.82 
146 6.770 6.689 2.720 2.430 0.635 25.23 
25F 4.067 4.877 2.960 3.576 0.689 24.53 
25R 1.533 1.225 3.148 11.853 1.264 23.80 

 



 
Fig. 5. Mass chromatogram (m/z 191) showing the distribution of hopanes and tricyclic 
terpanes in the saturated fractions. The b-amyrin derivative is a soil microbe biomarker that 
was observed in all sites except for 25R. See Table 2 for compound symbols. 
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An odd-even predominance (OEP) is observed for HMF and the forested LSP soils, 319 

especially in extracted m/z 71 (Fig. 4 and Supp. Fig. S1), reflecting the presence of higher plants, 320 

specifically plant waxes. The triterpenoid biomarkers [B2] and [B6] are chemical signatures of 321 

soil microbes and are seen in HMF and forested LSP soils. Not surprisingly, soils from barren 322 

site 25R do not display OEP or biomarkers [B2] or [B6], consistent with the site’s lack of 323 

vegetation (Fig. 4). Within LSP, site 25R has higher isoprenoid to normal alkane ratios 324 

(pristane/n-C17 and phytane/n-C18) compared to the other sites. This can be explained by 325 

preferential biodegradation of n-alkanes compared to the isoprenoids at some point in the site’s 326 

history (Table 3) (Peters et al., 2005).  Biodegradation at site 25R is also supported by the UCM 327 

as seen in Figure 4E. This is surprising because site 25R supports no vegetation. It is possible 328 

that microbial degradation of fossil fuels at site 25R took place at the time of contamination and 329 

the signs we observe are from an earlier period of degradation. 330 

331 

3.3.2. Fraction 2 (aromatic hydrocarbons) 332 

Soil extract from the reference site HMF had lower amounts of Fraction 2 (predominantly 333 

aromatic hydrocarbons) (52.0 mg/kgsoil) than did LSP soil extracts (Table 1).  For the forested 334 

LSP sites, extract Fraction 2 values ranged from 363 to 506 mg/kgsoil while LSP soil 25R yielded 335 

somewhat less than the other LSP sites, 119 mg/kgsoil of extract Fraction 2. We intended for the 336 

LC separation to segregate saturated hydrocarbons into Fraction 1 and aromatic compounds into 337 

Fraction 2 but some long chain aliphatic hydrocarbons (> C27) also eluted into Fraction 2 (Fig. 338 

6).  We observed only one major aromatic compound in the solvent extract from the 339 

uncontaminated reference site HMF (Fig. 6 A), which is an abietane derivative [B1]. In the 340 

extracts from LSP, the primary aromatic compounds are PAHs (Fig. 6 B - E) and include parent 341 



16 

and alkylated napthalenes, phenanthrenes, pyrenes, chrysenes and their isomers [e.g. NAPx, 342 

PHN, PYR, CHR]. Also notable in LSP soils are heterocyclic compounds including 343 

dibenzofurans and benzonaphthothiophene [DBF, BNT].  Sample 25R’s PAH distributions 344 

resemble those in the other LSP samples but there is also a noticeable UCM (Fig. 6 E).  345 

Figure 6 346 

The aromatic fraction data indicate that the chosen reference soil HMF is indeed relatively 347 

uncontaminated while all LSP sites have significant PAH contamination.  These data also 348 

support our hypothesis that there are more fossil fuel biomarkers present at LSP compared to 349 

HMF.  The overall aromatic hydrocarbon distribution is similar for all LSP soils (Fig. 6 B-E), 350 

reflecting similar mixtures of contaminants. Fraction 2 data for LSP 25R soil indicated a 351 

significant UCM, which suggests weathering and biodegradation, in agreement with Fraction 1 352 

data (Figs. 4 E, 6 E).  If biodegradation is taking place, we might expect the concentration of low 353 

weight molecular PAHs, like naphthalene, to decrease (Biache et al., 2017). We observe PAHs in 354 

our data; perhaps these compounds are absorbed in coal particles and thus shielded from 355 

biodegradation (Liu et al., 2008). We note that the PAH distributions in the pyrolyzates of the 356 

LSP soils and extracted Fraction 2 show a greater predominance of parent PAHs than those of 357 

the extract (Fraction 2), as seen by comparison of Figure 3E with 6E and specifically with PHN 358 

in Supplemental Fig. S5 (Wang and Fingas, 2003).  The greater predominance of parent 359 

compounds indicates a pyrogenic source, which derives from incomplete combustion of fossil 360 

fuels (Chen et al., 2004; Given, 1987; Micić et al., 2011; Stout and Emsbo-Mattingly, 2008). 361 

362 

3.3.3. Fraction 3 (polar compounds) 363 

The soil from the reference site HMF contains ergosterol and stigmasterol derivatives [S2, S3, 364 

S4, S5, S6], a diterpenoid tentatively identified as totarol [B13], and octadecanoic acid butyl 365 



Fig. 6. Total ion current (TIC) for fraction 2 of soil extracts from the HMF (A), 43 (B), 146 
(C), 25F (D) and 25R (E) sites.  The data show fewer polycyclic aromatic hydrocarbons in 
HMF.  Distributions of aromatic compounds are similar for chromatograms B, C, D, and E. 
See Table 2 for compound symbols. 
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ester [FA4] (Fig. 7 A).  This ester and the steroids are also present in the forested soils from LSP 366 

(Fig. 7 B-D).  The plasticizer, diisobutyl phthalate [X1], is present in all soils.  Compounds 367 

present in all LSP sites, but not in HMF, include 1-heptacosanol and 1,2-benzenedicarboxylic 368 

acid, bis(2-ethylhexyl) ester [B14, X2].  The triterpenoids tentatively identified as 3E-methoxy-369 

D-friedoolean-14-ene and olean-12-en-3-one [B15, B16] were present in LSP 43 and 146 soils,370 

while lupeol and lup-20(29)-ene-3,28-diol [B17, B21] were found in LSP 146 and 25R soils 371 

(Fig. 7 B-D).  LSP site 25R has fewer polar compounds compared to the other sites but includes 372 

the steroids stigmast-5-en-3-ol and stigmast-4-en-3-one [S4, S6] (Fig. 7 E). 373 

Figure 7 374 

The soil at HMF contains both ergosterol and stigmasterol derivatives.  Ergosterols are 375 

generally found in fungi, while stigmasterol typically occurs in higher plants (Peters et al., 2005).  376 

HMF also contains totarol [B13], which is a cyclic diterpenoid that is present in resins from 377 

higher plants (Tinoco et al., 2006), and a long chain alcohol, 1-heptacosanol, which is present in 378 

terrestrial organic matter (Wang et al., 2009; Yunker et al., 1995).  All of these compounds are 379 

compatible with a normal, temperate forest soil.  The vegetation present at HMF is 380 

predominantly cedar.   The plasticizer diisobutyl phthalate [X1] is present in all the studied soils, 381 

possibly a result of having stored the soil samples in plastic bags.  The origin of octadecanoic 382 

acid butyl ester in soils is of unknown origin and could be another plasticizer introduced during 383 

sample handling (Cahill et al., 2006).  The dominant species present at LSP is Betula populifolia, 384 

which is present at 43, 146 and 25F (Evans et al., 2015; Gallagher et al., 2008b).  Lupeol [B8] 385 

and lup-20(29)-ene-3,28-diol [B12] are biological indicators of birch (Peters et al., 2005).  The 386 

microbially and plant-derived steroids and triterpenoids are much less abundant at site 25R, not 387 

unexpected since it is void of vegetation.  The presence of life in 25R is also apparent in the 388 



 
Fig. 7. Total ion current (TIC) for fraction 3 of soil samples from the HMF (A), 43 (B), 146 
(C), 25F (D) and 25R (E).  See Table 2 for compound symbols. 
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polar compounds, specifically sitosterol (stigmast-5-en-3-ol) and the degradation product of389 

sitosterol, stigmast-4-en-3-one (Mackenzie et al., 1982; Pautler et al., 2013). 390 

3.4. Organic petrography 391 

All samples (soil particles smaller than 2 mm) from LSP had high amount of organic matter and 392 

it was represented dominantly by anthropogenic material. Coal particles were prominent in all 393 

four samples, accounting for 14.3 to 30.0 vol. %, and they were especially abundant in samples 394 

25R and 43. Coal particles were of various ranks from high volatile bituminous to anthracite, 395 

with the latter being the dominant rank in all samples (Fig. 8). Carbonization-derived material 396 

(coke) is also common and ranges from 6.6 to 12.0 vol. %, with samples 43 and 146 having the 397 

largest proportions (Fig. 8 and 9). Tar and pitch-like material were prominent in samples 25R 398 

and 25F (Figs. 8 and 9), and far less abundant in the other two samples. Combustion-derived 399 

material accounted for 7.1 to 23.1%, being most common in sample 146 (Fig. 8). The 400 

combustion-derived material was represented both by organic material (char) and mineral matter 401 

(glass, spinel, etc.) (Fig. 9). In total, anthropogenic material accounted for more than 50 vol % of 402 

all the samples with site 25R soil having the largest contribution (Fig. 8). Recent organic matter 403 

(classified as “other” in Fig. 8) was rare and represented by wood fragments. 404 

Figure 8 405 

Figure 9 406 

Organic petrography was useful in comparing LSP sites in terms of soil organic 407 

components, including different ranks of coal, coke, tar and pitch, fly ash/bottom ash, sediments, 408 

and other materials (Suárez-Ruiz et al., 2012).  The organic petrography profiles of sites close to 409 

each other at LSP share similarities; for example, soils from 43 and 146 that are located close in 410 

proximity and are along train tracks to a coal pier based on historic aerial photographs (Fig. 1B) 411 



Fig. 8.  Organic petrographic composition (in volume %) of samples 43, 146, 25F and 25R.  
The data show that 25F and 25R have more tar/pitch compared to 43 and 146.  HMF soil was 
not analyzed for organic petrography because coal particles were not visible to the naked eye.  
 

  



Fig. 9. Examples of photomicrographs of anthropogenic particles identified in the samples. 
Each sample has two photomicrographs. Reflected light, oil immersion.  
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have the highest abundance of coke.  Soils from 25F and 25R, which are adjacent sites, were 412 

both prominent in tar and pitch-like material.  Site 25R has the largest proportion of non-mineral 413 

material (Fig. 8), which could be a reason for or the result of a lack of vegetation at this site.  414 

415 

3.5. Inorganic elemental analysis 416 

The concentrations of several inorganic compounds in HMF and LSP soils were also determined 417 

(Supp. Table S1).  As expected, we found the lowest concentrations of metals (V, Cr, Ni, Cu, Zn, 418 

As, and Pb) at the reference site HMF; however, HMF soil showed a high Al concentration 419 

(20,527 ± 249 ppm), which was matched by only one of the LSP sites, 25R (Supp. Table S1). 420 

There were elevated concentrations of Na, Co, Cu, Zn, As, and Pb at both 25F ([Na]: 873; [Co]: 421 

256; [Cu]: 2256; [Zn] 14435; [As] 630; [Pb] 7145 mg/kg, triplicate measurements, see Supp. 422 

Table S1 for errors) and 25R ([Na]: 4393; [Co]: 869; [Cu]: 7165;  [Zn] 41271; [As]: 1162;  [Pb] 423 

20302 mg/kg) compared to the other LSP sites (Supp. Table S1). 424 

Sanders (2003) in a survey of New Jersey soils, determined background levels of metals; 425 

the HMF metal concentrations closely match his values from northeastern New Jersey (“urban 426 

Piedmont”) soils (Supp. Table S1) (Sanders, 2003), confirming that HMF is a good reference soil 427 

for this study. The high concentrations of Al in HMF relative to LSP soils may suggest a higher 428 

abundance of aluminosilicate clay minerals in HMF compared to LSP (Barton et al., 2002; 429 

Buettner and Valentine, 2011).  Figure 10 shows element concentration anomalies at LSP sites; 430 

metal concentrations were normalized to the reference site HMF values.  Specifically, we find 431 

anomalously high levels of Na, Co, Cu, Zn, As, and Pb in LSP soils, especially at sites 25F and 432 

25R (Fig. 10).  For example, As concentrations in 25F and 25R were found to be 119 and 220 433 

times higher compared to HMF, respectively.  Although these sites are adjacent, As 434 
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concentrations are about two times higher at 25R compared to 25F.  It is common to find As, Cr, 435 

Cu, Pb and Zn in contaminated soil. In particular, As, Cu, Cr, and Zn are associated with 436 

chromated copper arsenate, which was used in some rail yards for treating wood used for railroad 437 

ties (Kumpiene et al., 2008).  Another possible explanation for the anomalously high 438 

concentrations is that bulk minerals, perhaps pyrites, sulfides, or oxides, were transported on the 439 

railroad lines, possibly supplying not only Fe but also As, Cd, Co, Cu, and Ni (Finkelman, 1995).  440 

It is also possible that coal and slag, which can include the trace elements in coal ashes, were 441 

transported through LSP (Schweinfurth, 2003).  442 

Figure 10 443 

444 

3.6 Extracellular soil phosphatase activities and bacterial density 445 

Site 146 has the highest bacterial density (cells/gdry soil) (7.87 (± 0.82) u 108) of the sites (Fig. 11 446 

A).  Soils from HMF (4.64 (± 0.93) u 108), 43 (4.37 (± 0.35) u 108), and 25F (4.97 (± 0.61) u 447 

108) are forested and have similar bacterial densities to each other.  The barren site 25R has448 

lower but measurable bacterial density (2.09 (± 0.76) u 108 cells/gdry soil). The data in Figure 11 B 449 

show that site 146 has the highest phosphatase activity (2.60 (± 0.55) u 106 pmol/g/h) of the soils 450 

studied here.  This result agrees with previous findings where we found that site 146 has higher 451 

phosphatase, cellobiohydrolase and L-leucine-amino peptidase activities compared to three other 452 

LSP sites and to HMF (Hagmann et al., 2015).  Despite the measurable bacterial density, the 453 

phosphatase activity at barren 25R is below the threshold of detection.  It is surprising that site 454 

25F, which is located next to site 25R, has high phosphatase activity (pmol/g/h) (1.38 (± 0.39) u 455 

106).  The phosphatase activities at HMF and 43 are (0.47 (± 0.38) u 106) and (0.67 (± 0.13) u 456 

106), respectively. 457 



Fig. 10 Concentrations elements listed in order of atomic weight normalized to HMF. The 
data is arranged from the lowest to the highest (43, 146, 25F and 25R) average metal 
concentration.  The dotted line present in A. and B. is the background HMF. 
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Figure 11 458 

The low but measurable bacterial density we found at barren site 25R indicates the 459 

presence of bacterial life. Even so, the phosphatase activity in the soil is below the threshold of 460 

detection and it is possible the bacteria in 25R soil are dormant, perhaps owing to poor nutrient 461 

cycling and availability.  In a previous study, Singh and co-workers found via next-generations 462 

sequencing that the bacterial community at site 25R is statistically distinct from the other LSP 463 

sites (Singh et al., 2019b).  The presence of bacteria in 25R soil is consistent with the 464 

biodegradation at this site discussed in Section 3.3.1.  It is possible that microbial degradation of 465 

fossil fuels indicated by the UCM in the 25R GC-MS data took place at some time in the site’s 466 

history. 467 

Site 146 has high bacterial density and phosphatase activity (Fig. 11) and also the highest 468 

percent organic matter (44 %) (Table 1).  We had originally hypothesized that the high function 469 

at site 146 is due to differences in organic compound profiles, perhaps because of the absence of 470 

specific contaminants that are present at other LSP sites.   Conversely, we found that site 146 has 471 

an organic composition similar to the other forested sites at LSP as seen in the pyrolysis and GC-472 

MS data (Figs. 3, 4, 5, and 6); however, organic composition may not explain the high activity at 473 

this site.  Site 25R is also distinct from the other LSP sites: it has no plants and no detectable 474 

phosphatase activity. If this absence of function is a result of organic contaminants, we would 475 

expect to observe differences in the organic contaminant profiles between site 25R and the other 476 

LSP sites.  Analogously to site 146, we found that the organic composition at site 25R is similar 477 

to the other sites at LSP as seen in the pyrolysis and GC-MS data except that compounds 478 

associated with higher plants are absent (Figs. 3, 4, 5, and 6). 479 



Fig. 11. Bacterial density (cells/g dry soil, mean and error bars are SE; n = 3) and 
phosphatase activity (pmol*g-1*hr-1, mean and error bars are SE; n =3) of HMF, 43, 146, 25F, 
and 25R soils are shown.   
 

  



22 

We considered the possibility that the low function at 25R is due not to differences in the 480 

identity of organic contaminants but rather the concentration of specific compounds in the soil. 481 

This is unlikely because the extract yields from 25R for soil particles less than 2 mm in diameter 482 

are significantly lower than for the other LSP sites.  These data together suggest that the organic 483 

contaminant profile at site 25R is not responsible for the functional differences between this site 484 

and other LSP sites.  Previous findings by Singh et al. (2019a) showed that abiotic factors are 485 

more important than biotic ones for enzymatic function in LSP soils.  In light of these findings 486 

and having now ruled out a different organic contaminant profile as the reason for the low 487 

function at site 25R, our new hypothesis is that the higher concentrations of Na, Co, Cu, Zn, As, 488 

and Pb at 25R (discussed in Section 3.5) are responsible for the poor function of the site (Singh 489 

et al., 2019a). The concentrations of these metals are about 2 to 5 times higher than in the 490 

forested and high functioning site 25F that is located adjacent to site 25R. We plan to further 491 

investigate whether these elevated metal concentrations at 25R affect soil extracellular enzymatic 492 

activity and plant production. For example, it is possible that the As concentrations at site 25R 493 

are sufficiently high to inhibit phosphatase activity (Lee et al., 2011; Lorenz et al., 2006; Speir et 494 

al., 1999). 495 

496 

3.7 Insights into functional variation between LSP sites 497 

All LSP sites are contaminated with PAHs and other fossil fuel-derived components that are 498 

absent or barely detectable at reference site HMF.  The presence of the PAHs, hopanes, steranes, 499 

and sesquiterpanes supports our first hypothesis that there are more fossil fuel biomarkers at LSP 500 

compared to HMF.  Vegetated sites at LSP have unnaturally high organic matter content (30 to 501 

45 %), relative to pristine vegetated soils, reflecting large quantities of anthropogenic 502 
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contaminants in these soils.  The distributions of the PAHs and fossil fuel biomarkers are similar 503 

for all soils within LSP.  However, the yield of extractable organic matter at 25R is lower and 504 

thus we suspect that the extraordinarily high content of inorganic contaminants rather than 505 

organic contaminants explains the barren site's lack of vegetation.  We hypothesized that the 506 

barren site 25R would have more or different contaminants compared to the forested sites at 507 

LSP. This was found to be true for several inorganic contaminants but not for the organic 508 

contaminant profiles within LSP. 509 

LSP’s history and the soils’ chemical and petrographic fingerprints agree with the 510 

location of the sites within the rail yard.  Sites 43 and 146 are located on what was once a dense 511 

array of railroad tracks leading to the coal pier.  Their soils contain more coal and less tar and 512 

pitch compared to sites 25F and 25R, which were on different railroad lines carrying other 513 

unspecified cargo. We observe wider gaps between tracks in historical photographs of the 25F 514 

and 25R area, in which we suspect that dumping activities occurred (Fig. 1 D and E).  It is 515 

possible that 25F is forested and has high phosphatase activity, because it was on an active 516 

railroad track whereas 25R was on a gap, where more dumping occurred, and thus has low 517 

phosphatase activity.  While we did not find evidence that would explain these differences in the 518 

nonbiologically-derived organic contaminant profiles, we note significantly higher metal 519 

contaminant concentrations in 25R compared to 25F. 520 

521 

3.8 Implications for investigating contaminated ecosystems 522 

In this study, we used several experimental methods in conjunction with pyrolysis GC-MS to 523 

study soils from three types of sites: an uncontaminated vegetated reference site (HMF), 524 

contaminated vegetated sites (LSP 43, 146, 25F) and a contaminated, industrial barren (25R).  525 
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Our data are consistent with the presence and absence of biologically derived organic matter in 526 

the study sites: biological pyrolysis products are not present in the organic chemical fingerprint 527 

of soil 25R, which instead shows a predominance of contaminant-derived aromatic compounds.  528 

These data serve as a case study or reference set for the differences in data observed for 529 

contaminated vegetated and contaminated barren soils, especially because indicators from 530 

vegetation can chemically obscure the signatures of contaminants.  531 

Site 25R in LSP is an example of an area that is contaminated and barren as a result of 532 

past anthropogenic activities and, possibly, the subsequent environmental and physical 533 

conditions.  Such “industrial barrens” are present worldwide and are considered “extreme 534 

environments” (Kozlov and Zvereva, 2007).  Unfortunately, industrial barrens, and especially 535 

those that have high heavy metal loads, are often unlikely to recover naturally but, even so, they 536 

are studied less than other extreme environments.  Many studies on industrial barrens focus on 537 

evaluation of damage and development of rehabilitation measures while more fundamental 538 

studies on soil function and detailed soil characterization are lacking, limiting our understanding 539 

of the fundamental chemistry, biochemistry and ecology of these sites.  Kozlov and Zvereva 540 

(2007) suggested that researchers often choose the most contaminated but planted sites within an 541 

area for their studies because they are more comparable with less disturbed sites. 542 

543 

4. Conclusion544 

Site 25R is an example of an industrial barren and here we have conducted a multifaceted 545 

chemical and biochemical analysis of this soil and compared the findings to those in nearby 546 

vegetated sites.  The phosphatase activity at site 25R is below our limit of detection, yet direct 547 

bacterial counts indicate the presence of bacteria.  Interestingly, these findings suggest that 548 
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microbes in 25R soils are present but lying dormant, perhaps as a result of either inorganic 549 

contaminant loads or physical abiotic restrictions in the soil.  Perhaps fostering plant growth, 550 

aerating the soil, or adding root exudates to the contaminated 25R soil will revive some of the 551 

microbes and subsequently improve nutrient cycling and overall soil function. The inactive 552 

microorganisms may be waiting for an environmental nudge or input to revitalize them and 553 

unleash their functional potential in the currently contaminated, poorly functioning, and barren 554 

25R soil.  This same story of dormant and abiotically limited microbes, waiting to be revitalized, 555 

may be playing out in other industrial barrens throughout the world. It behooves the scientific 556 

community to more fully investigate these sites to obtain a deeper and more fundamental 557 

understanding, which can then be leveraged to prevent land degradation and to restore 558 

dysfunctional and phytotoxic soils. 559 
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Figure and Table Caption 567 

Fig. 1. Liberty State Park is located in Jersey City, New Jersey (A). Aerial images from: U. S. 568 

Geological Survey: 1954 (B, E) and 2014 (C). Study sites within LSP are indicated on the map 569 

(43, 146, 25F, 25R). A historical photograph of 25F and 25R from 1951 (D). Sites 25F and 25R 570 

are adjacent; 25R is in a strip of land without vegetation (F). Photo credits: D: Andrew 571 

Bologovsky, F: Mike Peters (Montclair State University). Photos used with permission. 572 

573 

Fig. 2. Flow chart illustrating the experimental design for the experiment. 574 

575 

Fig. 3. Total ion current (TIC) for Py-GC-MS of soil samples from sites HMF (A), 43 (B), 146 576 

(C), 25F (D) and 25R (E).  The data for 25R show predominantly mono- and polycyclic aromatic 577 

hydrocarbons and aromatic hydrocarbons. See Table 2 for compound symbols. 578 

579 

Figure 4. Total ion current (TIC) for fraction 1 of soil extracts from sites HMF (A), 43 (B), 146 580 

(C), 25F (D), and 25R (E). The data show distributions of alkanes (normal isoprenoids (m/z 71) 581 

and triterpenoids (m/z 191). See Table 2 for compound symbols. 582 

583 

Figure 5. Mass chromatogram (m/z 191) showing the distribution of hopanes and tricyclic 584 

terpanes in the saturated fractions. The E-amyrin derivative is a soil microbe biomarker that was 585 

observed in all sites except for 25R. See Table 2 for compound symbols. 586 

587 

588 

589 
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Fig. 6. Total ion current (TIC) for fraction 2 of soil extracts from the HMF (A), 43 (B), 146 (C), 590 

25F (D), and 25R (E) sites.  The data show fewer polycyclic aromatic hydrocarbons in HMF.  591 

Distributions of aromatic compounds are similar for chromatograms B, C, D, and E. See Table 2 592 

for compound symbols. 593 

594 

Fig. 7. Total ion current (TIC) for fraction 3 of soil samples from the HMF (A), 43 (B), 146 (C), 595 

25F (D) and 25R (E).  See Table 2 for compound symbols.596 

597 

Fig. 8.  Organic petrographic composition (in volume %) of samples 43, 146, 25F, and 25R.  The 598 

data show that 25F and 25R have more tar/pitch compared to 43 and 146.  HMF soil was not 599 

analyzed for organic petrography because coal particles were not visible to the naked eye. 600 

601 

Fig. 9. Examples of photomicrographs of anthropogenic particles identified in the samples. Each 602 

sample has two photomicrographs. Reflected light, oil immersion. 603 

604 

Fig. 10. Element concentration anomalies relative to reference site HMF.  Elements are 605 

presented in order of atomic weight, with each normalized to its value in the HMF reference soil. 606 

The plots are arranged from the lowest (site 43) to the highest (25R) overall metal concentration.  607 

The dotted lines visible in A and B show the background HMF values. 608 

609 

Fig. 11. Bacterial density (cells/g dry soil, mean and error bars are SE; n = 3) and phosphatase 610 

activity (pmol*g-1*hr-1, mean and error bars are SE; n =3) of HMF, 43, 146, 25F, and 25R soils 611 

are shown.  612 
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613 

Table 1. Organic matter content (%, mean r SE; n = 3), extraction and liquid chromatographic 614 

results from HMF, 43, 146, 25F and 25R soils.  Fraction 1 contains saturated hydrocarbons; 615 

fraction 2 – aromatic compounds and long chain (> C27) normal alkanes; fraction 3 – polar 616 

compounds. The data show that soil from site 146 has the highest percent organic matter.  The 617 

LC results show the percentage of the total extract as well as yield per kg of dry soil.  618 

619 

Table 2: Symbols for peak identification used in Figures 1-7. 620 

621 

Table 3. Carbon preference index (CPI), odd-even predominance (OEP), pristine/phytane 622 

(Pr/Ph), Pr/C17, Ph/C18, and weighted average carbon number of HMF, 43, 146, 25F and 25R. 623 

624 

625 

626 

627 

628 

629 

630 

631 

632 

633 
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Supplementary Figures 
  

 

Fig. S1. Mass chromatograph (m/z 71) for all five samples (HMF, 146, 43, 25F, 25R), showing 
extracted normal alkanes with some isoprenoid compounds. See Table 1 for compound 
symbols. 
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Fig. S2. Mass chromatogram (m/z 123), showing sesquiterpanes in all sample sites (HMF, 
146, 43, 25F, and 25R); an indication of fossilized higher plant biomass. They are bicyclic 
compounds and the building components for triterpenoids. The compound symbols are as 
follows: nor-drimane (ND), farnesane (FR), 4A(H)-eudesmane (EU), 8B(H)-drimane (DR), 
homofarnesane (HF), 8B(H)-homodrimane (HD).  Sesquiterpanes were not detected in HMF. 
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Fig. S3. Mass chromatogram (m/z 217), showing steranes in all sample sites (HMF, 146, 43, 
25F, and 25R).  The compound symbols are as follows:. 
 



 
 
Fig. S4. Mass chromatograms (m/z 178, 192, 206, 220) showing the distribution of 
phenanthrene and methylated phenanthrenes in the aromatic fractions (on left) and Py-GC-
MS (on right) of soil samples from HMF and LSP sites 43, 146, 25F and 25R. See Table 1 for 
compound symbols. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 43 146 25F 25R HMF  Urban NJ 

Piedmont 
mg/kg Average ± 

standard 
error 

Average ± 
standard 
error 

Average ± 
standard 
error 

Average ± 
standard 
error 

Average ± 
standard 
error 

Median  

Li  7.7 ± 0.8 5.4 ± 0.7 24.1 ± 4.07  40.7 ± 12.4 23.8 ± 0.6  

Na 99 ± 8 218 ± 12 873 ± 129 4393 ± 669 47 ± 3 90.1 

Mg 1240 ± 129 1477 ± 106 3132 ± 411  6213 ± 1819  3153 ± 60 2190 

Al  4980 ± 325 5563±  1195  16132 ± 
1519 

20470 ± 
4194  

20527 ± 249 10500 

P  429 ± 17 690 ± 14 684 ± 14 789 ± 49 534 ±48  

K  839 ± 80 686 ± 16 1737 ± 113   2697 ± 404 1927 ± 78 693 

Ca  1948 ± 164 4065 ± 775  8228 ± 1402  10068 ± 
1685  

1542 ± 107 1425 

Sc  2.06 ± 0.13 2.82 ± 0.25 2.40 ± 0.24 3.43 ± 0.48 3.06 ± 0.02  

V  32.9 ± 0.9 164 ± 8.3 70.7 
± 9.5 

77.3 ± 11.8 30.1 ± 0.1 29.6 

Cr  24.8 ± 0.7 118.0 ± 2.1 79.2 ± 3.2 165.2 ± 21.7   21.0 ± 0.3 18.5 

Mn  159 ± 10 127 ± 4 460 ± 32 1042 ± 141 674 ± 56 311 

Fe 34061± 1819 17520 ± 
1491 

179062 ± 
22211 

266653 ± 
59863 

18722 ± 
1540 

14600 

Co  5.5 ± 0.4 6.2 ± 0.3 256.5 ± 46.5  868.7 ± 
178.8 

6.0 ± 0.1 6.3 

Ni  21.1 ± 1.4 46.7 ± 0.9 121.4 ± 13.8 317.4 ± 62.5  18.5 ± 0.3 12.4 

Cu  79 ± 4 93 ± 3 2256 ± 320 7165 ± 1512 18 ± 2 29.5 

Zn  89 ± 4 180 ±  24  14435 ± 
2845 

41271 ± 
8526  

78 ± 4 75.3 

As 17.8 ± 1.0 37.4 ± 4.5 630 ± 187 1162 ± 207 5.3 ± 0.1 5.2 

Mo 3.5 ± 0.1 4.7 ± 0.4 29.3 ± 1.6 63.1 ± 10.1 1.6 ± 0.1  

Ag 0.42 ± 0.02 0.97 ± 0.01 3.80 ± 0.07 7.04 ± 0.79 0.58 ± 0.01 < D.L. 

Cd 0.20 ± 0.01 0.63 ± 0.06 3.88 
± 0.63 

7.74 ± 0.30 ± 0.02 < D.L. 

Ba 88 ± 3 181 ± 15 533 ± 53 1467 ± 267 139 ± 4 80.6 

Pb 215 ± 9 355 ± 18 7145 ± 1351 20302 ± 
4203 

28 ± 1 111 

 
Supplement Table S1. Concentrations (µg/g) of elements listed in order of atomic weight for 
the average of HMF, 43, 146, 25F and 25R of three replicates.  (1 ± S.E.).  Urban NJ 
Piedmont is from Sanders 2003, where values indicated are the median concentration 
(mg/kg).  < D.L. is below detection limit, which is Ag = 0.2 and Cd = 0.4 mg/kg. 
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