210 research outputs found

    Oscillation of Third-Order Neutral Delay Differential Equations

    Get PDF
    The purpose of this paper is to examine oscillatory properties of the third-order neutral delay differential equation [a(t)(b(t)(x(t)+p(t)x(σ(t)))′)′]′+q(t)x(τ(t))=0. Some oscillatory and asymptotic criteria are presented. These criteria improve and complement those results in the literature. Moreover, some examples are given to illustrate the main results

    Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vignaunguiculata (L.) Walp].

    Get PDF
    Fusarium wilt is a vascular disease caused by the fungus Fusariumoxysporum f.sp. tracheiphilum (Fot) in cowpea [Vignaunguiculata (L.) Walp]. In this study, we mapped loci conferring resistance to Fot race 4 in three cowpea RIL populations: IT93K-503-1 Ã— CB46, CB27 Ã— 24-125B-1, and CB27 Ã— IT82E-18/Big Buff. Two independent loci which confer resistance to Fot race 4 were identified, Fot4-1 and Fot4-2. Fot4-1 was identified in the IT93K-503-1 (resistant) Ã— CB46 (susceptible) population and was positioned on the cowpea consensus genetic map, spanning 21.57-29.40 cM on linkage group 5. The Fot4-2 locus was validated by identifying it in both the CB27 (resistant) Ã— 24-125B-1 (susceptible) and CB27 (resistant) Ã— IT82E-18/Big Buff (susceptible) populations. Fot4-2 was positioned on the cowpea consensus genetic map on linkage group 3; the minimum distance spanned 71.52-71.75 cM whereas the maximum distance spanned 64.44-80.23 cM. These genomic locations of Fot4-1 and Fot4-2 on the cowpea consensus genetic map, relative to Fot3-1 which was previously identified as the locus conferring resistance to Fot race 3, established that all three loci were independent. The Fot4-1 and Fot4-2 syntenic loci were examined in Glycine max, where several disease-resistance candidate genes were identified for both loci. In addition, Fot4-1 and Fot4-2 were coarsely positioned on the cowpea physical map. Fot4-1 and Fot4-2 will contribute to molecular marker development for future use in marker-assisted selection, thereby expediting introgression of Fot race 4 resistance into future cowpea cultivars

    Subsonic steady-states for bipolar hydrodynamic model for semiconductors

    Full text link
    In this paper, we study the well-posedness, ill-posedness and uniqueness of the stationary 3-D radial solution to the bipolar isothermal hydrodynamic model for semiconductors. The density of electron is imposed with sonic boundary and interiorly subsonic case and the density of hole is fully subsonic case

    Algebraic time-decay for the bipolar quantum hydrodynamic model

    Full text link
    The initial value problem is considered in the present paper for bipolar quantum hydrodynamic model for semiconductors (QHD) in R3\mathbb{R}^3. We prove that the unique strong solution exists globally in time and tends to the asymptotical state with an algebraic rate as t→+∞t\to+\infty. And, we show that the global solution of linearized bipolar QHD system decays in time at an algebraic decay rate from both above and below. This means in general, we can not get exponential time-decay rate for bipolar QHD system, which is different from the case of unipolar QHD model (where global solutions tend to the equilibrium state at an exponential time-decay rate) and is mainly caused by the nonlinear coupling and cancelation between two carriers. Moreover, it is also shown that the nonlinear dispersion does not affect the long time asymptotic behavior, which by product gives rise to the algebraic time-decay rate of the solution of the bipolar hydrodynamical model in the semiclassical limit.Comment: 23 page

    Semiclassical and relaxation limits of bipolar quantum hydrodynamic model

    Get PDF
    The global in-time semiclassical and relaxation limits of the bipolar quantum hydrodynamic model for semiconductors are investigated in R3R^3. We prove that the unique strong solution converges globally in time to the strong solution of classical bipolar hydrodynamical equation in the process of semiclassical limit and to that of the classical Drift-Diffusion system under the combined relaxation and semiclassical limits.Comment: 21 page

    Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1

    Get PDF
    Background: Biomineralization is a significant process performed by living organisms in which minerals are produced through the hardening of biological tissues. Herein, we focus on calcium carbonate precipitation, as part of biomineralization, to be used in applications for environmental protection, material technology, and other fields. A strain GM-1, Microbacterium sp. GM-1, isolated from active sludge, was investigated for its ability to produce urease and induce calcium carbonate precipitation in a metabolic process. Results: It was discovered that Microbacterium sp. GM-1 resisted high concentrations of urea up to 60 g/L. In order to optimize the calcification process of Microbacterium sp. GM-1, the concentrations of Ni2+ and urea, pH value, and culture time were analyzed through orthogonal tests. The favored calcite precipitation culture conditions were as follows: the concentration of Ni2+ and urea were 50 \u3bcM and 60 g/L, respectively, pH of 10, and culture time of 96 h. Using X-ray diffraction analysis, the calcium carbonate polymorphs produced by Microbacterium sp. GM-1 were proven to be mainly calcite. Conclusions: The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery

    Fasting Hyperglycemia Increases In-Hospital Mortality Risk in Nondiabetic Female Patients with Acute Myocardial Infarction: A Retrospective Study

    Get PDF
    Previous studies had shown that elevated admission plasma glucose (APG) could increase mortality rate and serious complications of acute myocardial infarction (AMI), but whether fasting plasma glucose (FPG) had the same role remains controversial. In this retrospective study, 253 cases of AMI patients were divided into diabetic (n=87) and nondiabetic group (n=166). Our results showed that: compared with the nondiabetic patients, diabetic patients had higher APG, FPG, higher plasma triglyceride, higher rates of painless AMI (P<0.01), non-ST-segment elevation myocardial infarction (NSTEMI), and reinfraction (P<0.05). They also had lower high density lipoprotein cholesterol and rate of malignant arrhythmia, but in-hospital mortality rate did not differ significantly (P>0.05). While nondiabetic patients were subgrouped in terms of APG and FPG (cut points were 11.1 mmol/L and 7.0 mmol/L, resp.), the mortality rate had significant difference (P<0.01), whereas glucose level lost significance in diabetic group. Multivariate logistic regression analysis showed that FPG (OR: 2.014; 95% confidence interval: 1.296–3.131; p<0.01) but not APG was independent predictor of in-hospital mortality for nondiabetic patients. These results indicate that FPG can be an independent predictor for mortality in nondiabetic female patients with AMI
    • …
    corecore