715 research outputs found

    Trustworthy AI: Deciding What to Decide

    Get PDF
    peer reviewedWhen engaging in strategic decision-making, we are frequently confronted with overwhelming information and data. The situation can be further complicated when certain pieces of evidence contradict each other or become paradoxical. The primary challenge is how to determine which information can be trusted when we adopt Artificial Intelligence (AI) systems for decision-making. This issue is known as “deciding what to decide” or Trustworthy AI. However, the AI system itself is often considered an opaque “black box”. We propose a new approach to address this issue by introducing a novel framework of Trustworthy AI (TAI) encompassing three crucial components of AI: representation space, loss function, and optimizer. Each component is loosely coupled with four TAI properties. Altogether, the framework consists of twelve TAI properties. We aim to use this framework to conduct the TAI experiments by quantitive and qualitative research methods to satisfy TAI properties for the decision-making context. The framework allows us to formulate an optimal prediction model trained by the given dataset for applying the strategic investment decision of credit default swaps (CDS) in the technology sector. Finally, we provide our view of the future direction of TAI researchCloud-Based Computational Decision By Leveraging Artificial Ultra Intelligence9. Industry, innovation and infrastructur

    Transformer Multivariate Forecasting: Less is More?

    Get PDF
    In the domain of multivariate forecasting, transformer models stand out as powerful apparatus, displaying exceptional capabilities in handling messy datasets from real-world contexts. However, the inherent complexity of these datasets, characterized by numerous variables and lengthy temporal sequences, poses challenges, including increased noise and extended model runtime. This paper focuses on reducing redundant information to elevate forecasting accuracy while optimizing runtime efficiency. We propose a novel transformer forecasting framework enhanced by Principal Component Analysis (PCA) to tackle this challenge. The framework is evaluated by five state-of-the-art (SOTA) models and four diverse real-world datasets. Our experimental results demonstrate the framework’s ability to minimize prediction errors across all models and datasets while significantly reducing runtime. From the model perspective, one of the PCA-enhanced models: PCA+Crossformer, reduces mean square errors (MSE) by 33.3% and decreases runtime by 49.2% on average. From the dataset perspective, the framework delivers 14.3% MSE and 76.6% runtime reduction on Electricity datasets, as well as 4.8% MSE and 86.9% runtime reduction on Traffic datasets. This study aims to advance various SOTA models and enhance transformer-based time series forecasting for intricate data

    (Invited) intrinsic reliability assessment of 650V rated AlGaN/GaN based power devices:an industry perspective

    Get PDF
    Although astounding performance is already proven by many research papers, the widespread adoption of GaN power devices in the market is still hampered by (1) yield and reproducibility ; (2) cost ; (3) reliability. All three factors are to be considered, but to convince customers to adopt GaN power devices, proven device and product reliability is a must. Cost is kept acceptably low by growing the GaN epi stack on 6 inch and 8inch Si substrates, and by processing the GaN power device technology in standard CMOS production lines. This paper will focus on the most important intrinsic reliability mechanisms for GaN power devices. It will cover gate dielectric reliability, Ohmic contact reliability, accelerated drain stress testing (high temperature reverse bias--HTRB) and high voltage device wear-out testing (high voltage off-state stress--HVOS). Acceleration models are discussed A measurement strategy to extract valuable information about the physical properties of the buffer layers (e.g. activation energies of the traps, conduction mechanisms, \u2026) based on simple transmission line structures, is outlined

    A mammalian methylation array for profiling methylation levels at conserved sequences

    Get PDF
    Infinium methylation arrays are not available for the vast majority of non-human mammals. Moreover, even if species-specific arrays were available, probe differences between them would confound cross-species comparisons. To address these challenges, we developed the mammalian methylation array, a single custom array that measures up to 36k CpGs per species that are well conserved across many mammalian species. We designed a set of probes that can tolerate specific cross-species mutations. We annotate the array in over 200 species and report CpG island status and chromatin states in select species. Calibration experiments demonstrate the high fidelity in humans, rats, and mice. The mammalian methylation array has several strengths: it applies to all mammalian species even those that have not yet been sequenced, it provides deep coverage of conserved cytosines facilitating the development of epigenetic biomarkers, and it increases the probability that biological insights gained in one species will translate to others

    Synaptic vesicle mimics affect the aggregation of wild-type and A53T α-synuclein variants differently albeit similar membrane affinity

    Get PDF
    Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected]. α-Synuclein misfolding results in the accumulation of amyloid fibrils in Parkinson\u27s disease. Missense protein mutations (e.g. A53T) have been linked to early onset disease. Although α-synuclein interacts with synaptic vesicles in the brain, it is not clear what role they play in the protein aggregation process. Here, we compare the effect of small unilamellar vesicles (lipid composition similar to synaptic vesicles) on wild-type (WT) and A53T α-synuclein aggregation. Using biophysical techniques, we reveal that binding affinity to the vesicles is similar for the two proteins, and both interact with the helix long axis parallel to the membrane surface. Still, the vesicles affect the aggregation of the variants differently: effects on secondary processes such as fragmentation dominate for WT, whereas for A53T, fibril elongation is mostly affected. We speculate that vesicle interactions with aggregate intermediate species, in addition to monomer binding, vary between WT and A53T, resulting in different consequences for amyloid formation.\ua0\ua9 The Author(s) 2019

    Reversing age: Dual species measurement of epigenetic age with a single clock

    Get PDF
    Young blood plasma is known to confer beneficial effects on various organs in mice. However, it was not known whether young plasma rejuvenates cells and tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly-accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=593 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=850 human tissue samples to the training data. We employed these six clocks to investigate the rejuvenation effects of a plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. Cellular senescence, which is not associated with epigenetic aging, was also considerably reduced in vital organs. Overall, this study demonstrates that a plasma-derived treatment markedly reverses aging according to epigenetic clocks and benchmark biomarkers of aging.Fil: Horvath, Steve. University of California at Los Angeles; Estados UnidosFil: Singh, Kavita. NMIMS University; IndiaFil: Raj, Ken. Public Health England; Reino UnidoFil: Khairnar, Shraddha. NMIMS University; IndiaFil: Sanghav, Akshay. Nugenics Research Pvt Ltd; IndiaFil: Shrivastava, Agnivesh. Nugenics Research Pvt Ltd; IndiaFil: Zoller, Joseph A.. University of California at Los Angeles; Estados UnidosFil: Li, Caesar Z.. University of California at Los Angeles; Estados UnidosFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Canatelli Mallat, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Lehmann, Marianne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Solberg Woods, Leah C.. Wake Forest University School of Medicine; Estados UnidosFil: Garcia Martinez, Angel. University of Tennessee; Estados UnidosFil: Wang, Tengfei. University of Tennessee; Estados UnidosFil: Chiavellini, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Levine, Andrew J.. University of California at Los Angeles; Estados UnidosFil: Chen, Hao. University of Tennessee; Estados UnidosFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Katcher, Harold L.. Nugenics Research Pvt Ltd; Indi

    A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling

    Get PDF
    Funding Information: Acknowledgments We thank Dr. Tsuyoshi Nakagawa (Shimane University) for the gift of the gateway vectors, pGWB2, pGWB80, pGWB5, and pGWB3. This work was supported in part by funding from the Program for Promotion of Basic Research Activities for Innovation Bioscience (PROBRAIN) to T.N. and T.A., and CREST, Japan Science and Technology Agency to T.N. and T.A.Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.Peer reviewe
    corecore