1,332 research outputs found

    Topology, connectivity and electronic structure of C and B cages and the corresponding nanotubes

    Full text link
    After a brief discussion of the structural trends which appear with increasing number of atoms in B cages, a one-to one correspondence between the connectivity of B cages and C cage structures will be proposed. The electronic level spectra of both systems from Hartree-Fock calculations is given and discussed. The relation of curvature introduced into an originally planar graphitic fragment to pentagonal 'defects' such as are present in buckminsterfullerene is also briefly treated. A study of the structure and electronic properties of B nanotubes will then be introduced. We start by presenting a solution of the free-electron network approach for a 'model boron' planar lattice with local coordination number 6. In particular the dispersion relation E(k) for the pi-electron bands, together with the corresponding electronic Density Of States (DOS), will be exhibited. This is then used within the zone folding scheme to obtain information about the electronic DOS of different nanotubes obtained by folding this model boron sheet. To obtain the self-consistent potential in which the valence electrons move in a nanotube, 'the March model' in its original form was invoked and results are reported for a carbon nanotube. Finally, heterostructures, such as BN cages and fluorinated buckminsterfullerene, will be briefly treated, the new feature here being electronegativity difference.Comment: 22 pages (revtex4) 12 figure

    GEOxyz bvba

    Get PDF

    Characterization of a planar 8 mm wide radiofrequency atmospheric pressure plasma source by spectroscopy techniques

    Get PDF
    Atmospheric pressure planar radiofrequency (RF) 13.56 MHz discharge in Ar gas generated in a long gap is investigated. The discharge operation with and without a dielectric barrier on the electrodes is studied as a function of the applied power and gas flow. The source afterglow is characterized and is analyzed for possible large-scale biomedical applications where low gas temperature is required. The discharge is studied by relative and absolute emission spectroscopies. A gas temperature as low as 330 +/- 50 K is determined from the rotational-vibrational band of OH emission. The absolute value of the discharge continuum irradiation is used to determine the electron density and the electron temperature. The electron-atom and electron-ion contributions to the bremsstrahlung radiation are calculated and are compared with measured spectra. The electron density of 1.9 +/- 1 x 10(20) m(-3) and electron temperature of 1.75 +/- 0.25 eV are measured in the discharge without a dielectric barrier. It is found that presence of the dielectric has a negligible effect on electron temperature, whereas the electron number density is almost six times lower in the discharge with the dielectric barrier

    Time-resolved characterization of a pulsed discharge in a stationary bubble

    Get PDF
    In recent years, plasma generation in water has been proposed for the application of water treatment. The process efficiency is believed to be improved by the introduction of bubbles in the plasma active region. For further optimization, the initiating and developmental mechanisms of plasma inside bubbles need to be understood to a greater extent. In order to meet this necessity, we investigated pulsed electrical discharge inside a stationary bubble in water. This paper deals with the evolution of the discharge and of the bubble shape during discharge, investigated by electrical characterization and fast imaging. Only several microseconds after the application of the voltage pulse, plasma light is observed. Different phases are observed during plasma formation. The plasma is strongest at the bubble surface, causing the surrounding water to evaporate. This leads to both the formation of propagating streamers into the water and the expansion and collapse of the bubble. These observations show that plasma inside a bubble has the strongest activity at the bubble surface, making it attractive for water treatment

    Effect of spin-orbit coupling on the excitation spectrum of Andreev billiards

    Full text link
    We consider the effect of spin-orbit coupling on the low energy excitation spectrum of an Andreev billiard (a quantum dot weakly coupled to a superconductor), using a dynamical numerical model (the spin Andreev map). Three effects of spin-orbit coupling are obtained in our simulations: In zero magnetic field: (1) the narrowing of the distribution of the excitation gap; (2) the appearance of oscillations in the average density of states. In strong magnetic field: (3) the appearance of a peak in the average density of states at zero energy. All three effects have been predicted by random-matrix theory.Comment: 5 pages, 4 figure

    Wildfires and geochemical change in a subalpine forest over the past six millennia

    Get PDF
    Citation: Bérangère Leys and Philip E Higuera and Kendra K McLauchlan and Paul V Dunnette. (2016). Wildfires and geochemical change in a subalpine forest over the past six millennia. Environmental Research Letters, 11(12), 125003.Bérangère Leys and Philip E Higuera and Kendra K McLauchlan and Paul V Dunnette. (2016). Wildfires and geochemical change in a subalpine forest over the past six millennia. Environmental Research Letters, 11(12), 125003.The frequency of large wildfires in western North America has been increasing in recent decades, yet the geochemical impacts of these events are poorly understood. The multidecadal timescales of both disturbance-regime variability and ecosystem responses make it challenging to study the effects of fire on terrestrial nutrient cycling. Nonetheless, disturbance-mediated changes in nutrient concentrations could ultimately limit forest productivity over centennial to millennial time scales. Here, we use a novel approach that combines quantitative elemental analysis of lake sediments using x-ray fluorescence to assess the geochemical impacts of high-severity fires in a 6200 year long sedimentary record from a small subalpine lake in Rocky Mountain National Park, Colorado, USA. Immediately after 17 high-severity fires, the sedimentary concentrations of five elements increased (Ti, Ca, K, Al, and P), but returned to pre-fire levels within three decades. Multivariate analyses indicate that erosion of weathered mineral material from the catchment is a primary mechanism though which high-severity fires impact element cycling. A longer-term trend in sediment geochemistry was also identified over millennial time scales. This decrease in the concentrations of six elements (Al, Si, K, Ti, Mn, and Fe) over the past 6200 years may have been due to a decreased rate of high-severity fires, long-term ecosystem development, or changes in precipitation regime. Our results indicate that high-severity fire events can determine elemental concentrations in subalpine forests. The degree of variability in geochemical response across time scales suggests that shifting rates of high-severity burning can cause significant changes in key rock-derived nutrients. To our knowledge, these results are the first to reveal repeated loss of rock-derived nutrients from the terrestrial ecosystem due to high-severity fires. Understanding the future of fire-prone coniferous forests requires further documentation and quantification of this important mechanism linking fire regimes and biogeochemical cycles

    Human Intestinal Organoids and Microphysiological Systems for Modeling Radiotoxicity and Assessing Radioprotective Agents

    Get PDF
    Radiotherapy is a commonly employed treatment for colorectal cancer, yet its radiotoxicity-related impact on healthy tissues raises significant health concerns. This highlights the need to use radioprotective agents to mitigate these side effects. This review presents the current landscape of human translational radiobiology, outlining the limitations of existing models and proposing engineering solutions. We delve into radiotherapy principles, encompassing mechanisms of radiation-induced cell death and its influence on normal and cancerous colorectal cells. Furthermore, we explore the engineering aspects of microphysiological systems to represent radiotherapy-induced gastrointestinal toxicity and how to include the gut microbiota to study its role in treatment failure and success. This review ultimately highlights the main challenges and future pathways in translational research for pelvic radiotherapy-induced toxicity. This is achieved by developing a humanized in vitro model that mimics radiotherapy treatment conditions. An in vitro model should provide in-depth analyses of host-gut microbiota interactions and a deeper understanding of the underlying biological mechanisms of radioprotective food supplements. Additionally, it would be of great value if these models could produce high-throughput data using patient-derived samples to address the lack of human representability to complete clinical trials and improve patients’ quality of life

    Variation in guided streamer propagation along a DBD plasma jet by tailoring the applied voltage waveform

    Get PDF
    Experimental data on the evolution of a helium atmospheric pressure plasma jet driven by two different voltage waveforms are presented. The characteristics of directed ionization waves (guided streamers) were compared for a sinusoidal voltage waveform with a frequency of 52 kHz and a voltage waveform that was formed via the superposition of 41.6 kHz bipolar square pulses and 300 kHz oscillations. With the sinusoidal voltage, two consecutive ionization waves were observed. With a special tailoring voltage, control of the guided streamer propagation in a stepwise mode was achieved. The observed second streamer and the second step of propagation could be regarded as a secondary ionization wave for both voltages. A change in the voltage waveform led to significant variations in the secondary ionization wave formation and streamer parameters. The voltage waveform enabled the number of ionization waves and their propagation to change, which provided the possibility of controlling the plasma parameters of the jet

    Avascular Necrosis of the Foot and Ankle in a Patient with Systemic Sclerosis: A Case Based Review

    Get PDF
    This review describes a case of atraumatic avascular necrosis in the foot and ankle in a patient with systemic sclerosis who did not receive corticosteroid therapy. Both avascular necrosis and systemic sclerosis are uncommon disease entities. This case demonstrates that vasculitis and secondary vasoconstriction in the pathogenesis of systemic sclerosis are important risk factors for the development of avascular necrosis of the foot and ankle. Therefore, if these patients develop chronic foot and ankle pain, avascular necrosis should be included in the differential diagnosis, even if they do not receive corticosteroids. For the diagnosis and follow-up of avascular necrosis MRI remains the gold standard. Thus, MRI should be used to diagnose avascular necrosis in an early stage. Level of Clinical Evidence: 4.This review describes a case of atraumatic avascular necrosis in the foot and ankle in a patient with systemic sclerosis who did not receive corticosteroid therapy. Both avascular necrosis and systemic sclerosis are uncommon disease entities. This case demonstrates that vasculitis and secondary vasoconstriction in the pathogenesis of systemic sclerosis are important risk factors for the development of avascular necrosis of the foot and ankle. Therefore, if these patients develop chronic foot and ankle pain, avascular necrosis should be included in the differential diagnosis, even if they do not receive corticosteroids. For the diagnosis and follow-up of avascular necrosis MRI remains the gold standard. Thus, MRI should be used to diagnose avascular necrosis in an early stage. Level of Clinical Evidence: 4
    corecore