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Atmospheric pressure planar RF 13.56 MHz discharge in Ar gas generated in long gap is investigated. The 

discharge operation with and without dielectric barrier on the electrodes is studied as a function of the 

applied power and gas flow. The source afterglow is characterized and analyzed for possible large scale 

biomedical applications where low gas temperature is required. The discharge is studied by relative and 

absolute emission spectroscopy. The gas temperature as low as 330±50 K is determined from rotational-

vibrational band of OH emission. The absolute value of the discharge continuum irradiation is used to 

determine the electron density and the electron temperature. The electron-atom and electron-ion contributions 

to the Bremsstrahlung radiation are calculated and compared with measured spectra. The electron density of 

1.91×10
20

 m
-3

 and electron temperature of 1.750.25 eV are measured in the discharge without dielectric 

barrier. It is found that presence of the dielectric has negligible effect on electron temperature whereas 

electron number density is almost 6 times lower in the discharge with dielectric barrier.  
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1. Introduction 

In the last decades, atmospheric pressure plasma jets (APPJs) have been extensively investigated in various 

new and fast growing interdisciplinary research and application fields [1,2]. The cold plasma jet will not damage the 

material to be processed with plasma, thus becomes suitable for processing: biologic matter, liquids, surfaces of 

living organisms, polymers, wood, textiles, etc. These processing at atmospheric pressure are performed without 

being limited by a vacuum chamber and without costs of vacuum generation. Unfortunately, the radial dimensions 

of the reported APPJs are mainly very small, which is a major drawback and limitation for some large-scale 

applications. To overcome the shortcoming, some exploratory researches have been done in the last years and 

variety of up-scale strategies for APPJs has been proposed. A ten-channel atmospheric pressure glow discharge jet 

has been purposed by Cao et al [3]. Nie reported a two-dimensional array of 7 jets with honeycomb configurations 

[4]. Moreover, he suggested that this configuration of array had no fundamental limitation to scale up and a 37-

channel honeycomb-shaped array was presented to illustrate the scalability. The disadvantages of the use of plasma 

jet arrays are complex interaction between individual jets and extreme amount of the used expensive gases like Ar 

and even He, as has been observed by many researchers [5-8]. Another way to produce large area plasma source is 

an enlargement of the electrodes surface. A DC cold plasma brush (nozzle 10 mm × 1 mm) consisting of two 

cylindrical metallic electrodes with a perpendicular flowing Ar was reported by Duan et al [9,10]. Further 

enhancement on the DC brush was reported, such as the combination with a DBD reactor as a preionization source, 

the array of two DC brush with a transverse magnetic field [11-13]. Plasma brush driven by sub-microsecond 

voltage pulses was proposed by Lu et al [14]. M. Kong et al. [15] investigated possibility to generate RF plasma 

with 20 mm wide electrodes covered by dielectric. In [16] a large gap radio frequency (RF) discharge with one of 

the electrodes covered by dielectric (RF-DBD) has been generated in γ mode at atmospheric pressure in Ar as well 

as in N2.  

 Nowaday constructed RF sources tested for use in large scale applications [17] can be classified mainly 

into two categories, considering the configuration of electrodes: one type is Dielectric Barrier Discharge (DBD), 

uses a dielectric barrier at one or at both electrodes [18,19] and the second type, Discharge with Bare Electrodes 

(DBE), having both electrodes in contact with the plasma [20,21]. For these two types of plasma sources there is no 

comparative study of the plasma parameters and effect of dielectric barrier on the discharge performance. For this 

reason we developed two jet plasma sources with different electrode configurations, one with DBD configuration 

and another one with DBE configuration. Unfortunately, the current knowledge of such discharges physics is very 

limited and very little is known about the discharge physics. This work is dealing with study of planar discharge 

with 8 mm wide outlet nozzle which is used to produce long and wide afterglow for biomedical applications. The 

sources studied here are identical apart from the use of dielectric barrier. The main parameters of the plasma 

including electron density ne, electron temperature Te, and gas temperature Tg are determined by different 

spectroscopy techniques as a function of operation parameters of the source, namely presence of the dielectric 

barrier, input power and gas flow rate. Special attention is paid to study of the plasma source continuum radiation 

which is used here to evaluate the ne and Te of the plasma through the simulation of the Bremsstrahlung radiation. 
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2. Experimental set-up and methods. 

In current work two configurations of the planar RF discharge sources are studied. Both sources have the same 

discharge volume and architecture, working in similar conditions (RF power, gas type and flow rate) and so provide 

the opportunity to make a comparative study of the two types of discharges. Such a study could offer criteria for an 

optimization of the discharge operation and allocation of each source type in one application or another. Figure 1 

presents a schematic view of the jet plasma sources in DBD and DBE configuration. 

 

FIG. 1. Schematic view of DBD and DBE jet plasma sources. (1) RF electrode, (2)-GND electrode, (3)- Ceramic 

plates (dielectric), (4)-ceramic spacer, (5)-nozzle, (6)-gas intake hole. 

The source is made of two trapezoidal ceramic plates (0.6 mm thick), spaced by ceramic holder (spacer) with 1 mm 

thickness. The spacers close the discharge space all around the electrode edges except in the front, at the small base 

of the trapezium, this represents the nozzle. The gas is introduced between ceramic plates through the intake hole, 

drilled in one ceramic plate. The interelectrodes gap is fixed at 1 mm through all the experiments. A compact 

aluminum house is used to hold the discharge configuration. Argon gas with flow rate in the range of 0.5-10 SLM is 

used as the working gas. There are two sheet metallic electrodes (RF and GND) placed in an exterior over the 

ceramic plates at DBD source and in an interior at DBE source, see Figure 1 (1) and (2). The electrodes are 

connected to a radio frequency generator (Advanced Energy Cesar 133RF) through a matching box. The applied 
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input power is varied in between 6 and 18 W with less than 5% of the reflected power in all the experiments. It has 

to be noted here that initiation of the breakdown requires much higher input power of up to 100 W. For safe control 

of the discharge initiation LabView software was developed in order to operate the RF generator through an 

acquisition board connected to the generator user analog port. This high power has been applied in 3 consequent 

pulses on 100 ms each and power has been reduced to desired low value right after the breakdown. At low power the 

discharge is ignited in diffuse mode where glow-like discharge fills the entire discharge space. Meanwhile, a brush-

shape homogenous plasma afterglow is formed in the ambient air. Figure 2 shows the arrangement which was used 

in the work for basic characterization of the plasma source. 

 

FIG. 2. The experimental set-up arrangement. Optical multichannel analyzer (OMA), Matching Box (MB), RF 

Generator (GEN.), Multifunction Data Acquisition (DAQ), Intensified Charge-Coupled Device (ICCD) and Mass 

Flow Controller (MFC). 

The time integrated images of the discharge are recorded with the use of a Hamamatsu ICCD camera (C8484). The 

exposure time of the ICCD camera is adjusted in between the experiments for the highest contract of the images. 

The fast imaging is carried out with narrow band filters in order to detect OH radicals emission (309 nm), N2
*
 

emission (350-400 nm) and emission of Ar I line (753 nm). The optical emission spectrum is collected by two 

different spectrometers through the fiber optics. For a survey emission spectrum (250 – 850 nm), a S2000 Ocean 

Optics with a moderate resolution of 0.8 nm full width at half maxima (FWHM) is used. In order to obtain the gas 

temperature the high resolution spectrum of OH (A-X) bands is measured by an Avantes 3648 spectrometer with a 

resolution of 0.05 nm FWHM. The optical system is absolutely calibrated with an Oriel model 63355 tungsten-D2 

lamp and correspondingly the plasma irradiance in Wm
-2

nm
-1

 is measured. The experimental arrangement for 
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absolute OES measurement is schematically shown in figure 3. The plasma device is put 15 cm away from the 

detector in order to obtain the light projection of 1×1 cm
2
 on the detector surface. An absorbing baffle with an 

aperture (0.8 × 0.8 cm
2
) is placed between the jet source and the plane plate, and used to project the emission light 

from the discharge through the square aperture on the plate. All the three parts are centered precisely on the same 

optical axis with the help of a He-Ne laser beam. All the parts of the experimental arrangement mentioned above are 

fixed and identical for the calibration lamp and the plasma source. In this way, the spectral irradiance IP,λ(λ) from 

the plasma device can be represented as:  

IP,λ(λ) =
hP,λ(λ)

hL,λ(λ)
IL,λ(λ) 

where IL,λ(λ) (Wm
-2

nm
-1

) is the spectra irradiance of the calibration lamp, hP,λ(λ) and hL,λ(λ) are distance corrected 

relative emission intensities from the plasma and the lamp measured by the same OES system. All the measured 

values are time integrated and corrected for the background light. 

 

FIG. 3. Schematic diagram of the experimental setup for absolute OES measurements. 

  

3. Results and discussion. 

The application of RF high-voltage to the discharge gap leads to ignition of strongly filamentary  mode 

discharge. The discharge can be sustained in a diffuse mode filling the entire discharge space by decrease of the 

input power. In diffuse  mode, a brush-shape homogenous plasma afterglow is generated along the slit in the 

ambient air with the total length of about 8 mm.  

3.1. Emission spectrum of the discharge 

To identify the various reactive species produced in the plasma afterglow, optical emission spectroscopy 

has been used. Figure 4 shows a typical emission spectrum of the plasma afterglow. The plasma spectrum is 
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dominated by the emission bands from OH(A2Σ+ → X2Π), N2(C3Πu → B3Π𝑔), Ar I(4p → 4s) , O I(5p → 5s), and 

strong continuum radiation in the range of 300-750 nm attributed to Bremsstrahlung radiation [23,24]. The presence 

of molecular bands of OH radicals and N2 excited states allows estimating the gas temperature of the afterglow. As 

known [22], the energy transfer in between Ar metastables and N2 leading to excitation of state N2(C) at high 

rotational levels makes difficult interpretation of the N2 bands emission and so OH band has been used in the present 

work for the gas temperature calculation. The rotational temperature of the plasma was obtained through the analysis 

of OH(A2Σ+ → X2Π) spectrum. In current study LIFBASE software has been used to simulate the spectrum but full 

explanation of the procedure is omitted here because it is well known method, well described in many other works 

[1,3,22]. The inset in Figure 4 shows the best-fitting synthetic spectrum to the experimental spectrum of the 

OH(A2Σ+ → X2Π, ∆𝑣 = 0) band transition from 306 nm to 312 nm, with rotational temperature of 33050 K. The 

found value of Tg agrees well with the measurements by IR thermometer giving temperature of 340 K and clearly 

indicates low working temperature of the plasma source which is important parameter for possible biomedical 

application. 

 

FIG. 4. Typical overview of the spectra of the discharge with dielectric barrier at 18 W and 10 slm Ar flow. The 

inset is an example of the best fit of the rotational structure of OH band by the simulation with Trot=330 K. No 

spectrometer sensitivity correction has been applied to the spectra. 

In Figures 5 and 6 optical emission intensities are plotted for specific lines, namely OH at 308.9 nm, N2 second 

positive system at 337.1 nm, Ar I at 696.5 nm, and O I at 777.53 nm, as function of RF forward power and flow rate. 
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3D representation of the results has been performed through the use gridding method with extrapolation by Thin 

Plate Spline method implemented in Origin 8.0. 

 

FIG. 5. Dependence of optical emission of OH (309 nm), N2 (337 nm), Ar (696 nm) and O2 (777 nm) on gas flow 

rate value and input power for DBD discharge configuration, in argon for RF power at the range of 618 W (signal 

recorded at 1mm from nozzle, normal to the plasma plane. 

The increasing of the intensities of all lines with increase RF power is observed for both sources. The 

increase clearly related to the fact that higher power results in longer afterglow. However, in DBD configuration the 

emission is almost linearly proportional to the power with the exception of 6 W where the discharge is probably not 

stable, see Figure 5. In DBE configuration emission tends to be saturated at power of around 18 W. We were not 

able to test higher power due to transfer of the discharge to  filamentary mode. In both configurations (DBD and 

DBE) the intensities of OH and N2 are highest at low mass flow rate value of 1 slm at power > 11 W. This is 

explained by strong mixing of the ambient air with the main Ar gas at such a low flow rate and so by increase of N2 

and H2O amount in the afterglow. The increase of gas flow rate above the threshold of 1 slm at power >11 W leads 
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to formation of Ar laminar flow and increase of OH intensity as well as Ar I and O I. It indicates that the main 

source of H2O in the discharge at flow rate higher than 1 slm is probably impurities in the gas and pipes and not the 

ambient air diffusion. The tendency in a change of the lines intensity is almost the same for both configurations of 

the source but all the intensities are 35 times lower in DBD source which is also confirmed visually and by ICCD 

imaging.  

 

FIG. 6. Dependence of optical emission of OH (309 nm), N2 (337 nm), Ar (696 nm) and O2 (777 nm) on gas flow 

rate value and input power for DBE discharge configuration, in argon for RF power at the range of 618 W (signal 

recorded at 1mm from nozzle, normal to the plasma plane. 

Ar I signal is increasing with increase of the Ar flow rate in both discharges since increase of flow prevents plasma 

core from the air admixing. It has to be noted that intensity of O I line follows the behavior of Ar I in contrast to 

lines of OH and N2
*
. The particularity is observed for Ar I line in dependence of the used plasma source 

configuration. In barrier discharge Ar I signal increases gradually with increase of flow rate from 2 to 10 slm but in 

DBE source the Ar I emission has strong peak at power higher 16 W and flow of 8-10 slm. Such a difference in 

behavior of Ar I emission is probably related to transformation of -mode to -mode characterized by much higher 
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intensity of Ar I lines. Strong dependence of the Ar I emission on the discharge mode can be useful tool to control 

operation of the source in applications in order to prevent transformation to -mode, e.g. through variation of the 

input power. 

3.2. Imaging of the discharge. 

In consideration of the possible application of the developed plasmas the length and structure of the 

afterglow are the key parameters. For the purpose of investigate the spatial distribution in the plasma jet, we used 

imaging of DBD and DBE plasma jets with band-pass filters (FWHM=10 nm) with maximum of transparency at 

309 nm (maximum of OH (A) emission) and 753 nm (Ar I line), placed in the front of camera, and also images were 

made without filter. For pictures analysis a region of interest (ROI) has been defined from which the horizontal and 

vertical integral intensity profile were extracted, as shows in Figure 7. 

 

 

 

 

 

 

 

 

FIG. 7. Sample image of the DBD plasma jet, which shows how the horizontal and vertical intensity profiles were 

extracted, and a region of interest (ROI) determination. 

The profile intensities were calibrated with camera gain factor in order to account the fact that the images were taken 

with different camera gain values. The calibration of the camera has been carried out with the same Oriel lamp as 

one used for the absolute calibration of the spectrometer. Figure 8 shows a comparison between the optical emission 

intensity profiles, along the plasma jet (vertical), for DBD and DBE discharge, in argon with gas flow rate of 10 slm 

and input power of 12 W. The total emission of the discharge is almost 50 times higher for DBE discharge than for 

DBD discharge, see Figure 8, 9. Based on our experiments we can see that presence of the dielectric barrier helps for 

ignition of the discharge and sustaining the plasma in diffuse mode but the total emission from the plasma volume is 

considerable lower as confirmed by ICCD images presented in figure 8,9. The stabilization effect of the barrier 

discharge is demonstrated in figure 9 for horizontal distribution of the light intensity in the discharge zone.  
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FIG. 8. Comparison between the optical emission intensity profiles, along the plasma jet (vertical), for DBD and 

DBE discharge, in argon at 10 slm and 12 W RF power; without filter (a), with CW 309 nm (b) and CW 753 nm 

with 10 nm BW. 

 

FIG. 9. Comparison between the optical emission intensity profiles, across the plasma jet (horizontal), for DBE (top) 

and DBD (bottom) discharge, in argon at 10 slm gas flow and 12 W RF power; without filter (a), with 309 nm filter 

(b) and 753 nm filter (c). 

Though emission from DBE discharge is much higher than that from DBD, the profile is smother in the latter with 

very little of oscillations along the nozzle. In DBE configuration even small imperfections in the construction of the 

source and on surface of the metal electrodes lead to strong change in the local discharge intensity as we see in 

figure 9 (c) at 7 mm. The charge accumulation on dielectric barrier in DBD configuration allows to obtain uniform 

distribution of the electrical field in the gap and so to stabilize the plasma. The clear drawback of the presence of the 

barrier is related to its effect on direct current in RF plasmas. Purely capacitive coupling in DBD source leads to 

lower current by compare with the current in DBE configuration and so in formation of much weaker discharge. 
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3.3. Continuum Bremsstrahlung radiation analysis 

As shown in section 3.2 presence of the dielectric barrier has strong influence on the source performance but the 

picture of the discharge analysis will be incomplete without study of its electron density and temperature. RF plasma 

source designed in the present work emits strong continuum Bremsstrahlung radiation, see Figure 4 interval 350-600 

nm. This kind of continuum is well known phenomena in low pressure high ionized discharge and usually attributed 

to electron ions interactions. In high pressure low ionization degree plasma, as one considered here, the appearing of 

continuum is a result of 3 processes attributed to electron-atom, electron-ion free-free, and electron-ion free-bond 

interactions [23]. In present work, the absolute value of the plasma continuum emissivity in W × nm
-1

m
-3

sr
-1

 due to 

the Bremsstrahlung radiation is calculated as a sum of the contribution from electron–atom interactions: 

𝜀𝑒𝑎(𝜆, 𝑇𝑒 , 𝑛𝑒), from recombination of electrons and ions: 𝜀𝑒𝑖
𝑓𝑏

(𝜆, 𝑇𝑒 , 𝑛𝑒), and from free-free interaction of electrons 

and ions: 𝜀𝑒𝑖
𝑓𝑓

(𝜆, 𝑇𝑒 , 𝑛𝑒). In approximation of Maxwellian energy distribution of the electron energy the continuum 

contributions can be expressed as [23,24]: 

𝜀𝑒𝑎(𝜆, 𝑇𝑒 , 𝑛𝑒) = 𝐶𝑒𝑎
𝑛𝑒𝑛𝐴𝑟

𝜆2(𝑘𝑏𝑇𝑒)3/2 ∫ 𝑄𝑒𝑎
𝑚𝑜𝑚(𝐸)

∞

ℎ𝑐/𝜆
(1 −

ℎ𝑐

2𝜆𝐸
) √1 −

ℎ𝑐

𝜆𝐸
× exp (−𝐸/𝑘𝑏𝑇𝑒) × 𝐸2𝑑𝐸   (1) 

 𝜀𝑒𝑖
𝑓𝑏

(𝜆, 𝑇𝑒 , 𝑛𝑒) = 𝐶1𝑍2 𝑛𝑒𝑛𝑖

𝜆2√𝑇𝑒
(1 − 𝑒𝑥𝑝 (

ℎ𝑐

𝜆𝑘𝑏𝑇𝑒
)) 𝜉𝑒𝑖

𝑓𝑏
(𝜆, 𝑇𝑒)      (2) 

𝜀𝑒𝑖
𝑓𝑓

(𝜆, 𝑇𝑒 , 𝑛𝑒) = 𝐶1𝑍2 𝑛𝑒𝑛𝑖

𝜆2√𝑇𝑒
𝑒𝑥𝑝 (

ℎ𝑐

𝜆𝑘𝑏𝑇𝑒
) 𝜉𝑒𝑖

𝑓𝑓
(𝜆, 𝑇𝑒)       (3) 

where nAr is a density of Ar atoms,  is a wavelength, E is a electrons energy, 𝑘𝑏 is the Boltzmann constant, ni is a 

density of the ions, Z is a charge of the ions and 𝑄𝑒𝑎
𝑚𝑜𝑚(𝐸) is the momentum transfer cross section for electron atoms 

collisions. The constants in eq.(1-3) are 𝐶𝑒𝑎 = 0.10779 ×
𝛼ℎ

𝑚𝑒
3/2

𝑐
 𝑊𝑚2𝐽−3/2𝑠𝑟−1  with 𝛼 =

𝑒2

2ℎ𝑐𝜀0
,  𝜀0  is the 

permittivity of vacuum, 𝐶1 = 1.6321 × 10−43 𝐽𝑚4𝐾1/2𝑠−1𝑠𝑟−1  and 𝜉𝑒𝑖
𝑓𝑏

(𝜆, 𝑇𝑒)  and 𝜉𝑒𝑖
𝑓𝑓(𝜆, 𝑇𝑒)  are the Biberman 

factors. As follows from eq. (1-3) the emissivity of the continuum depends on electron density and electron 

temperature and, correspondingly, both plasma parameters can be estimated based on eq. (1-3) if absolute value of 

the plasma continuum is measured. As calculation of the integral in eq. (1) is very time consuming, a number of 

approximation equations have been proposed, see e.g. [25,26] where two equations for lowest and highest limit of 

eq. (1) were tested. In contrast to works [24,25] here all the contributions from 𝜀𝑒𝑎 ,   𝜀𝑒𝑖
𝑓𝑓

, and 𝜀𝑒𝑖
𝑓𝑏

 were considered 

and the integral in eq.(1) ∫ 𝑄𝑒𝑎
𝑚𝑜𝑚(𝐸)

∞

ℎ𝑐/𝜆
(1 −

ℎ𝑐

2𝜆𝐸
) √1 −

ℎ𝑐

𝜆𝐸
× exp (−𝐸/𝑘𝑏𝑇𝑒) × 𝐸2𝑑𝐸  has been calculated 

numerically in Python v.2.7. The required value of 𝑄𝑒𝑎
𝑚𝑜𝑚 is taken from [23], and so called Biberman factor 𝜉𝑒𝑖

𝑓𝑓
 is 

considered as a constant in the wavelength range of 300-700 nm, whereas 𝜉𝑒𝑖
𝑓𝑏

 is taken from [26]. The contribution 

of electron atom and electron ions collisions for two typical conditions of atmospheric pressure Ar discharge with 

Tg=330 K in the wavelength range 300-650 nm are presented in figure 10. The wavelength region for the simulation 
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is chosen considering the sensitivity range of the available spectrometers and the fact that calibration of the lamp 

was valid only for wavelength above 300 nm.  

  

  

FIG. 10. Emissivity of the Ar plasma estimated through numerical solution of eq. 1-3 for two typical conditions: a) 

Te=1 eV, ne=10
13

 cm
-3

 and b) Te=2 eV, ne=10
14

 cm
-3

. Values 𝜀𝑒𝑎
𝑚𝑎𝑥  and 𝜀𝑒𝑎

𝑚𝑖𝑛  are calculated through the use of 

approximation of the integral in eq.1 based on equations proposed in [23-25]. The emissivity is shown in log scale 

with inset in part b) demonstrating the approximations of eq.(1) in a linear scale.  

 The results of calculation show that at typical electron density realized in RF plasma jets of about 10
13

-10
14

 

cm
-3

 the contribution from the electron-ion interactions is 2-3 orders of magnitude lower than one from the electron-

atom interactions 𝜀𝑒𝑎 . The 𝜀𝑒𝑖
𝑓𝑓

, and 𝜀𝑒𝑖
𝑓𝑏

 contributions start to be comparable with 𝜀𝑒𝑎  at ne >10
16

 cm
-3

 which is 

obviously cannot be reached in our experimental conditions. The continuum radiation level is higher in UV region 

and also as it will be shown below the UV part is more sensitive to the change of Te and ne. The obtained continuum 

emissivity presented in figure 10 has been compared with experimental results of absolute spectroscopy. It is 

important to note here that in our work the irradiance of the discharge in units W/nm × m
2
 has been obtained instead 

a) 

b) 

Page 12 of 17CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13 
 

of the emissivity in Wnm
-1

m
-3

sr
-1

 because of the used calibration procedure. The calculated in Figure 10 emissivity 

has been recalculated to the irradiance considering the emitting volume of the discharge measured with ICCD device 

and distance from the discharge to the detector. Furthermore, the irradiance of the plasma has been compared with 

results of the calculations based on eq. (1-3) and ne with Te have been determined. 𝜀𝑒𝑎 ,   𝜀𝑒𝑖
𝑓𝑓

, and 𝜀𝑒𝑖
𝑓𝑏

 values have 

been calculated for the range of the electron densities of 10
11

 ÷ 10
15

 cm
-3

 and Te varying from 0.5 to 2 eV. The value 

of the total irradiation considering all 3 contributions as a function of electron density is presented in Figure 11. 

Figure 12 shows an effect of the electron temperature on plasma continuum irradiation. 

 

 

FIG. 11. Effect of electron density on the continuum radiation emitting by Ar discharge at atmospheric pressure for 

electron temperature of 1.75 eV. The black line represents a part of the absolutely calibrated experimental spectra of 

the discharge of 6 W input RF power working without the dielectric barrier: DBE configuration.  

Page 13 of 17 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14 
 

 

FIG. 12. Effect of electron temperature on the continuum radiation emitting by Ar discharge at atmospheric pressure 

for electron density of 5×10
14

 cm
-3

 and ion density equivalent to the electron density (DBE configuration).  

The best fitting of the experimental results for RF plasma of 10 W, 5 slm working without the dielectric 

barrier (DBE) has been obtained with Ne=1.91×10
20

 m
-3

 and Te=1.750.25 eV. The electron density measured 

through the absolute value of the continuum is in a good agreement with results obtained by different techniques 

[27] for RF atmospheric pressure plasma jets. The electron temperature is higher than the typical value of Ar 

excitation temperature Texc of 1 eV measured in the plasma jets by line-ratio technique [28]. It has to be noted here 

that so called excitation temperature measured by means of the line-ratio method is actually not the electron 

temperature and special procedure has to be used to make a correction in estimation of Te from Texc. The value of Te 

found here is in agreement with scarce direct measurements of Te by Thomson scattering on plasma jet source of 

14.5 MHz where Te has been found of about 1.5 eV [29]. Based on experimental results in presented work it was 

revealed that variation of gas flow rate from 0.5 to 10 slm has very minor effect on ne. A little bit higher ne of 

2.51×10
20

 m
-3

 has been determined for DBE plasma source at highest flow rate of 10 slm in comparing with 

ne=1.51×10
20

 m
-3

 at 0.5 slm which is probably explained by air diffusion in to the discharge gap at gas flow rate of 

0.5 slm. Correspondingly, the presence of O2 in the discharge gap at very low flow rate leads to electron attachment 

𝑂2 + 𝑒 → 𝑂2
− and so to decrease of the electrons density. The increase of gas flow to maximum 10 slm had almost 

negligible effect on electron temperature for both configurations of the plasma source: with and without dielectric 

barrier. It was found that increase of the RF power from 6 to 18 W does not has any significant effect on electron 

density and electron temperature in both configurations of the plasma source: DBD and DBE. This is probably can 

be explained by our observation that power increase results in plasma expansion and formation of the longer 

afterglow. Correspondingly, the observed increase of the plasma irradiance is related to increase of the plasma 

emitting volume, as shown in the subchapter 3.2, whereas the plasma properties are kept constant. This observation 
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is beneficial in terms of possible upscale of the system as we can vary the input power of the up-scaled source 

without altering the plasma properties. Nevertheless, the use of dielectric barrier covering electrode has pronounced 

effect on the plasma operation. Use of the plasma source with dielectric barrier (DBD) results in formation of 

plasma with almost 6 times lower ionization degree by compare with DBE configuration. The measured electron 

density in DBD discharge of 10 W, 5 slm is about 0.380.3×10
20

 m
-3

 which is much lower than ne = 1.91×10
20

 m
-3

 

measured for the same operational conditions in DBE plasma source. This fact is well agree with results of emission 

spectroscopy presented in Figure 5,6 for Ar lines intensities which are almost 10 times higher in DBE configuration. 

The effect of barrier layer on electrodes has shown less effect on electron temperature which is 1.750.25 eV and 

1.50.25 eV in DBE and DBD configurations, respectively. Such a difference in Te is within the errors of the 

method and no confirmed conclusions can be derived without independent measurements with higher sensitivity e.g. 

Thomson scattering which is out of the scope of the present study.  

4. Conclusions  

In summary, 8 mm wide diffuse RF planar discharge working at atmospheric pressure argon is developed and 

studied in current work. The main parameters of the discharge are determined in function of gas flow rate, input RF 

power and presence of dielectric barrier on the electrodes.  

The gas temperature is estimated based on simulation of the rotational temperature of the OH radicals. In the 

considered here range of RF power variation (6-18 W), and flow rate (0.5-10 slm) variation the gas 

temperature of the afterglow is almost constant and is about 33050 K. 

The discharge emission is almost 10 times lower when dielectric barrier is used. However, ICCD imaging of 

the discharge afterglow indicates that in DBD configuration (with dielectric barrier) more stable and uniform 

afterglow up to 6 mm in a length can be formed whereas in DBE configuration 8 mm long afterglow is non-

uniform and tends to transfer to  mode at lower input power.  

The continuum radiation recorded in the wavelength range of 300-700 nm is considered to originate from 

Bremsstrahlung radiation mainly due to interaction of neutrals and electrons. The measurement of absolute 

value of the continuum is proposed to be a powerful tool in diagnostics of the low temperature plasmas and 

allows us to estimate both electron density and temperature. Electrons density and temperature about 

1.591×10
20

 m
-3

 and 1.750.25 eV, respectively, are estimated from the absolute value of the continuum 

radiation for the discharge without dielectric materials at flow rate of 5 slm and 10 W input power. In DBD 

configuration ne=0.380.3×10
20

 m
-3

 and Te=1.50.25 eV are found for the same plasma operational conditions.  

Studied here RF source is proposed as alternative to widely used plasma jets of mm size as it has a 8 mm wide 

afterglow with length up to 6 mm and can be easily up-scaled to any required industrial demands. The source has 

been tested in two configurations: with and without a dielectric barrier on the electrodes and it was shown that in 
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both configurations the afterglow can be used in bio-medical applications where strong non equilibrium plasma of 

low temperature is required.  
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