28 research outputs found

    Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif

    Get PDF
    Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation

    Identification of ILK as a new partner of the ADAM12 disintegrin and metalloprotease in cell adhesion and survival.: ADAM12-ILK interaction

    No full text
    International audienceBased on its shedding and binding activities, the disintegrin and metalloprotease 12 (ADAM12) has been implicated in cell signaling. Here we investigate the intracellular protein interaction network of the transmembrane ADAM12L variant using an integrative approach. We identify the integrin-linked kinase (ILK) as a new partner for ADAM12L cellular functions. We demonstrate that ADAM12L coimmunoprecipitates with ILK in cells and that its cytoplasmic tail is required for this interaction. In human cultured hepatic stellate cells (HSCs), which express high levels of endogenous ADAM12L and ILK, the two proteins are redistributed to focal adhesions upon stimulation of a β1 integrin-dependent pathway. We show that down-regulation of ADAM12L in HSCs leads to cytoskeletal disorganization and loss of adhesion. Conversely, up-regulation of ADAM12L induces the Akt Ser-473 phosphorylation-dependent survival pathway via stimulation of β1 integrins and activation of phosphoinositide 3-kinase (PI3K). Depletion of ILK inhibits this effect, which is independent of ADAM12L proteolytic activity and involves its cytoplasmic domain. We further demonstrate that overexpression of ADAM12L promotes kinase activity from ILK immunoprecipitates. Our data suggest a new role for ADAM12L in mediating the functional association of ILK with β1 integrin to regulate cell adhesion/survival through a PI3K/Akt signaling pathway

    Protease profiling of liver fibrosis reveals the adam metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of TGF-β

    No full text
    International audienceDuring chronic liver disease, tissue remodeling leads to dramatic changes and accumulation of matrix components. Matrix metalloproteases and their inhibitors have been involved in the regulation of matrix degradation. However, the role of other proteases remains incompletely defined. We undertook a gene expression screen of human liver fibrosis samples using a dedicated gene array selected for relevance to protease activities, identifying the ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif, 1) gene as an important node of the protease network. Upregulation of ADAMTS1 in fibrosis was found to be associated with hepatic stellate cell (HSC) activation. ADAMTS1 is synthesized as 110-kDa latent forms and processed by HSCs to accumulate as 87-kDa mature forms in fibrotic tissues. Structural evidence suggested that the thrombospondin motif-containing domain from ADAMTS1 may be involved in interactions with, and activation of, the major fibrogenic cytokine, TGF-β. Indeed, we observed direct interactions between ADAMTS1 and latency-associated peptide-TGF-β (LAP-TGF-β). ADAMTS1 induces TGF-β activation through the interaction of the ADAMTS1 KTFR peptide with the LAP-TGF-β LKSL peptide. Down-regulation of ADAMTS1 in HSCs decreases the release of TGF-β competent for transcriptional activation and KTFR competitor peptides directed against ADAMTS1 block HSC-mediated release of active TGF-β. Using a mouse liver fibrosis model, we show that CCl(4) treatment induces ADAMTS1 expression in parallel to that of type I collagen. Importantly, concurrent injection of the KTFR peptide prevents liver damage. CONCLUSION: Our results indicate that up-regulation of ADAMTS1 in HSCs constitutes a new mechanism for control of TGF-β activation in chronic liver disease. (HEPATOLOGY 2011.)

    The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition.

    No full text
    The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT), a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A), we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways
    corecore