182 research outputs found

    Pitfalls in the theory of carrier dynamics in semiconductor quantum dots: the single-particle basis vs. the many-particle configuration basis

    Full text link
    We analyze quantum dot models used in current research for misconceptions that arise from the choice of basis states for the carriers. The examined models originate from semiconductor quantum optics, but the illustrated conceptional problems are not limited to this field. We demonstrate how the choice of basis states can imply a factorization scheme that leads to an artificial dependency between two, actually independent, quantities. Furthermore, we consider an open quantum dot-cavity system and show how the dephasing, generated by the dissipator in the von Neumann Lindblad equation, depends on the choice of basis states that are used to construct the collapse operators. We find that the Rabi oscillations of the s-shell exciton are either dephased by the dissipative decay of the p-shell exciton or remain unaffected, depending on the choice of basis states. In a last step we resolve this discrepancy by taking the full system-reservoir interaction Hamiltonian into account

    Superthermal photon bunching in terms of simple probability distributions

    Full text link
    We analyze the second-order photon autocorrelation function g(2)g^{(2)} with respect to the photon probability distribution and discuss the generic features of a distribution that result in superthermal photon bunching (g(2)>2g^{(2)}>2). Superthermal photon bunching has been reported for a number of optical microcavity systems that exhibit processes like superradiance or mode competition. We show that a superthermal photon number distribution cannot be constructed from the principle of maximum entropy, if only the intensity and the second-order autocorrelation are given. However, for bimodal systems an unbiased superthermal distribution can be constructed from second-order correlations and the intensities alone. Our findings suggest modeling superthermal single-mode distributions by a mixture of a thermal and a lasing like state and thus reveal a generic mechanism in the photon probability distribution responsible for creating superthermal photon bunching. We relate our general considerations to a physical system, a (single-emitter) bimodal laser, and show that its statistics can be approximated and understood within our proposed model. Furthermore the excellent agreement of the statistics of the bimodal laser and our model reveal that the bimodal laser is an ideal source of bunched photons, in the sense that it can generate statistics that contain no other features but the superthermal bunching

    Raman Laser Switching Induced by Cascaded Light Scattering

    Get PDF
    It is shown that, in multimode Raman lasers, cascaded light scattering (CLS) not only extends the optical frequency range, but can also modulate the laser dynamics. The origin of this phenomenon lies in the fact that many Raman lasing modes are directly correlated through CLS. The coupled‐mode equations only describe single‐mode cascaded Raman lasers and are insufficient for describing the multimode case. In this work, additional terms are introduced to account for intermodal interaction and, therefrom the physical mechanism behind the mode‐switching phenomenon is revealed. Additionally, mode‐switching controlled solely by a single‐mode pump in a whispering gallery mode (WGM) silica Raman laser is demonstrated. As the intracavity pump power is increased, laser switching happens between two adjacent WGMs in the same mode family

    Engineering a Highly Scalable Object-aware Process Management Engine Using Distributed Microservices

    Get PDF
    Scalability of information systems has been a research topic for many years and is as relevant as ever with the dramatic increases in digitization of business processes and data. This also applies to process-aware information systems, most of which are currently incapable of scaling horizontally, i.e., over multiple servers. This paper presents the design science artifact that resulted from engineering a highly scalable process management system relying on the object-aware process man-agement paradigm. The latter allows for distributed process execution by conceptually encapsulating process logic and data into multiple in-teracting objects that may be processed concurrently. These objects, in turn, are represented by individual microservices at run-time, which can be hosted transparently across entire server clusters. We present mea-surement data that evaluates the scalability of the artifact on a compute cluster, demonstrating that the current prototypical implementation of the run-time engine can handle very large numbers of users and process instances concurrently in single-case mechanism experiments with large amounts of simulated user input. Finally, the development of scalable process execution engines will further the continued maturation of the data-centric business process management field

    Pump-power-driven mode switching in a microcavity device and its relation to Bose-Einstein condensation

    Get PDF
    TL, DV, and HAML contributed equally to this work. DV is grateful for support from the Studienstiftung des Deutschen Volkes. We acknowlege funding from the European Research Council under the European Union's Seventh Framework ERC Grant Agreeement No. 615613 and from the German Research Foundation (DFG) via Project No. Re2974/3-1 and the Research Unit FOR2414.We investigate the switching of the coherent emission mode of a bimodal microcavity device, occurring when the pump power is varied. We compare experimental data to theoretical results and identify the underlying mechanism based on the competition between the effective gain, on the one hand, and the intermode kinetics, on the other. When the pumping is ramped up, above a threshold, the mode with the largest effective gain starts to emit coherent light, corresponding to lasing. In contrast, in the limit of strong pumping, it is the intermode kinetics that determines which mode acquires a large occupation and shows coherent emission. We point out that this latter mechanism is akin to the equilibrium Bose-Einstein condensation of massive bosons. Thus, the mode switching in our microcavity device can be viewed as a minimal instance of Bose-Einstein condensation of photons. Moreover, we show that the switching from one cavity mode to the other always occurs via an intermediate phase where both modes are emitting coherent light and that it is associated with both superthermal intensity fluctuations and strong anticorrelations between both modes.Publisher PDFPeer reviewe

    Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective

    Get PDF
    Vendor lock-in is a major barrier to the adoption of cloud computing, due to the lack of standardization. Current solutions and efforts tackling the vendor lock-in problem are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem in the cloud environment. Consequently, most customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. This paper provides a critical analysis of the vendor lock-in problem, from a business perspective. A survey based on qualitative and quantitative approaches conducted in this study has identified the main risk factors that give rise to lock-in situations. The analysis of our survey of 114 participants shows that, as computing resources migrate from on-premise to the cloud, the vendor lock-in problem is exacerbated. Furthermore, the findings exemplify the importance of interoperability, portability and standards in cloud computing. A number of strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contracts, selection of vendors that support standardised formats and protocols regarding standard data structures and APIs, developing awareness of commonalities and dependencies among cloud-based solutions. We strongly believe that the implementation of these strategies has a great potential to reduce the risks of vendor lock-in
    corecore