204 research outputs found
Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results
Results of matching valve and root repair to aortic valve and root pathology
ObjectiveFor patients with aortic root pathology and aortic valve regurgitation, aortic valve replacement is problematic because no durable bioprosthesis exists, and mechanical valves require lifetime anticoagulation. This study sought to assess outcomes of combined aortic valve and root repair, including comparison with matched bioprosthesis aortic valve replacement.MethodsFrom November 1990 to January 2005, 366 patients underwent modified David reimplantation (n = 72), root remodeling (n = 72), or valve repair with sinotubular junction tailoring (n = 222). Active follow-up was 99% complete, with a mean of 5.6 ± 4.0 years (maximum 17 years); follow-up for vital status averaged 8.5 ± 3.6 years (maximum 19 years). Propensity-adjusted models were developed for fair comparison of outcomes.ResultsThirty-day and 5-, 10-, and 15-year survivals were 98%, 86%, 74%, and 58%, respectively, similar to that of the US matched population and better than that after bioprosthesis aortic valve replacement. Propensity-scoreâadjusted survival was similar across procedures (P > .3). Freedom from reoperation at 30 days and 5 and 10 years was 99%, 92%, and 89%, respectively, and was similar across procedures (P > .3) after propensity-score adjustment. Patients with tricuspid aortic valves were more likely to be free of reoperation than those with bicuspid valves at 10 years (93% vs 77%, P = .002), equivalent to bioprosthesis aortic valve replacement and superior after 12 years. Bioprostheses increasingly deteriorated after 7 years, and hazard functions for reoperation crossed at 7 years.ConclusionsValve preservation (rather than replacement) and matching root procedures have excellent early and long-term results, with increasing survival benefit at 7 years and fewer reoperations by 12 years. We recommend this procedure for experienced surgical teams
Predictors of packed red cell transfusion after isolated primary coronary artery bypass grafting â The experience of a single cardiac center: A prospective observational study
<p>Abstract</p> <p>Background</p> <p>Preoperative patients' characteristics can predict the need for perioperative blood component transfusion in cardiac surgical operations. The aim of this prospective observational study is to identify perioperative patient characteristics predicting the need for allogeneic packed red blood cell (PRBC) transfusion in isolated primary coronary artery bypass grafting (CABG) operations.</p> <p>Patients and Methods</p> <p>105 patients undergoing isolated, first-time CABG were reviewed for their preoperative variables and followed for intraoperative and postoperative data. Patients were 97 males and 8 females, with mean age 58.28 ± 10.97 years. Regression logistic analysis was used for identifying the strongest perioperative predictors of PRBC transfusion.</p> <p>Results</p> <p>PRBC transfusion was used in 71 patients (67.6%); 35 patients (33.3%) needed > 2 units and 14 (13.3%) of these needed > 4 units. Univariate analysis identified female gender, age > 65 years, body weight †70 Kg, BSA †1.75 m<sup>2</sup>, BMI †25, preoperative hemoglobin †13 gm/dL, preoperative hematocrit †40%, serum creatinine > 100 Όmol/L, Euro SCORE (standard/logistic) > 2, use of CPB, radial artery use, higher number of distal anastomoses, and postoperative chest tube drainage > 1000 mL as significant predictors. The strongest predictors using multivariate analysis were CPB use, hematocrit, body weight, and serum creatinine.</p> <p>Conclusion</p> <p>The predictors of PRBC transfusion after primary isolated CABG are use of CPB, hematocrit †40%, weight †70 Kg, and serum creatinine > 100 Όmol/L. This leads to better utilization of blood bank resources and cost-efficient targeted use of expensive blood conservation modalities.</p
STRENDA DB : enabling the validation and sharing of enzyme kinetics data
Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a userâfriendly, webâbased service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal
Numerical tools for burning plasmas
The software stack under development within a European coordinated effort on tools for burning plasma modelling is presented. The project is organised as a Task (TSVV Task 10) under the new E-TASC initiative (Litaudon et al 2022 Plasma Phys. Control. Fusion 64 034005). This is a continued effort within the EUROfusion inheriting from the earlier European coordination projects as well as research projects based at various European laboratories. The ongoing work of the TSVV Tasks is supported by the Advanced Computing Hubs. Major projects requiring the high performance computing (HPC) resources are global gyrokinetic codes and global hybrid particle-magnetohydrodynamics (MHD) codes. Also applications using the integrated modelling tools, such as the Energetic-Particle Workflow, based on the ITER Integrated Modelling & Analysis Suite (IMAS), or the code package for modelling radio-frequency heating and fast-ion generation may require intensive computation and a substantial memory footprint. The continual development of these codes both on the physics side and on the HPC side allows us to tackle frontier problems, such as the interaction of turbulence with MHD-type modes in the presence of fast particles. One of the important mandated outcomes of the E-TASC project is the IMAS-enabling of EUROfusion codes and release of the software stack to the EUROfusion community
Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis
BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis
The DZHK research platform: maximisation of scientific value by enabling access to health data and biological samples collected in cardiovascular clinical studies
The German Centre for Cardiovascular Research (DZHK) is one of the German Centres for Health Research and aims to conduct early and guideline-relevant studies to develop new therapies and diagnostics that impact the lives of people with cardiovascular disease. Therefore, DZHK members designed a collaboratively organised and integrated research platform connecting all sites and partners. The overarching objectives of the research platform are the standardisation of prospective data and biological sample collections among all studies and the development of a sustainable centrally standardised storage in compliance with general legal regulations and the FAIR principles. The main elements of the DZHK infrastructure are web-based and central units for data management, LIMS, IDMS, and transfer office, embedded in a framework consisting of the DZHK Use and Access Policy, and the Ethics and Data Protection Concept. This framework is characterised by a modular design allowing a high standardisation across all studies. For studies that require even tighter criteria additional quality levels are defined. In addition, the Public Open Data strategy is an important focus of DZHK. The DZHK operates as one legal entity holding all rights of data and biological sample usage, according to the DZHK Use and Access Policy. All DZHK studies collect a basic set of data and biosamples, accompanied by specific clinical and imaging data and biobanking. The DZHK infrastructure was constructed by scientists with the focus on the needs of scientists conducting clinical studies. Through this, the DZHK enables the interdisciplinary and multiple use of data and biological samples by scientists inside and outside the DZHK. So far, 27 DZHK studies recruited well over 11,200 participants suffering from major cardiovascular disorders such as myocardial infarction or heart failure. Currently, data and samples of five DZHK studies of the DZHK Heart Bank can be applied for
Modulation radiogener Effekte durch plÀttchenreiches Plasma auf Zellen der kutanen Wundheilung in vitro
Eine klinische Herausforderung bei der Behandlung von Patienten mit Kopf-Hals-Tumoren stellen die hĂ€ufig auftretenden Wundheilungsstörungen in bestrahltem Gewebe dar. PlĂ€ttchenreiches Plasma (PRP) wird bereits zur Optimierung der Wundheilung bei diabetischen Ulcera und anderen chronischen Wunden eingesetzt. Die aktuelle Studie soll Aufschluss ĂŒber den möglichen Einsatz von PRP zur Verbesserung der Wundheilung strahlengeschĂ€digter Zellen geben.In einem Zellkulturmodell mit humanen mikrovaskulĂ€ren Endothelzellen (HDMEC) und humanen Fibroblasten (NHF) wird der Einfluss von PRP auf die Expression von Zytokinen und ZelladhĂ€sionsmolekĂŒlen nach Bestrahlung im Vergleich zu unbestrahlten Kontrollen mittels FACS, ELISA und qPCR untersucht. Proliferationsassays und Zellzahlmessungen liefern Erkenntnisse ĂŒber einen möglichen Einfluss von PRP auf die Proliferation und Ăberlebensrate der Zellen.Die Bestrahlung induziert eine dosisabhĂ€ngige Proliferationshemmung von NHF und HDMEC. Diese Proliferationshemmung wurde durch die durch Zugabe von PRP vermindert. Nach Bestrahlung zeigte sich die Expression von Zytokinen und AdhĂ€sionsmolekĂŒlen im Vergleich zur nicht bestrahlten Kontrollgruppe signifikant erhöht. Die Behandlung mit PRP konnte diesen Effekt der Bestrahlung modulieren.Die vorliegenden Daten geben Hinweise darauf, dass durch die Behandlung mit PRP radiogene Wundheilungsstörungen positiv beeinfluss werden können. Dies stellt einen möglichen Ansatzpunkt fĂŒr therapeutische Interventionen in der kutanen Wundheilung dar.Der Erstautor gibt keinen Interessenkonflikt an
Pregnancy-related changes in centre of pressure during gait
Physical and hormonal modifications occuring during the pregnancy, can lead to an increase in postural instability and to a higher risk of falls during gait. The first objective was to describe the center of pressure (COP) during late pregnancy at different gait velocity. Comparison of nulliparous women with postpartum women were conducted in order to investigate the effects of pregnancy. The second objective was to analyse COP variability between pregnant and non-pregnant women in order to investigate the effects of regnancy on gait variability. Methods: Fifty-eight pregnant women in the last four months of pregnancy, nine postpartum women and twenty-three healthy non-pregnant women performed gait trials at three different speeds: preferred, slow and fast. Results: In the last four months of pregnancy gait velocity decreased. During the pregnancy, gait velocity decreased by 22%, stopover time increased by 6â12%, COP excursion XY decreased by 5% and COP velocity decreased by 16% and 20% along the anteroposterior and transverse axes, respectively. After delivery, gait velocity increased by 3% but remained a lower compared to non-pregnant women (â12%). Intra-individual variability was greater for non-pregnant than pregnant women. Conclusions: COP parameters were influenced by pregnancy. This suggests that pregnant women establish very specific and individual strategies with the aim of maintaining stability during gait
- âŠ