4,438 research outputs found

    Global Existence Results and Uniqueness for Dislocation Equations

    Get PDF
    We are interested in nonlocal Eikonal Equations arising in the study of the dynamics of dislocations lines in crystals. For these nonlocal but also non monotone equations, only the existence and uniqueness of Lipschitz and local-in-time solutions were available in some particular cases. In this paper, we propose a definition of weak solutions for which we are able to prove the existence for all time. Then we discuss the uniqueness of such solutions in several situations, both in the monotone and non monotone case

    Molecular epidemiologic investigations of Mycoplasma gallisepticum conjunctivitis in songbirds by random amplified polymorphic DNA analyses.

    Get PDF
    An ongoing outbreak of conjunctivitis in free-ranging house finches (Carpodacus mexicanus) began in 1994 in the eastern United States. Bacterial organisms identified as Mycoplasma gallisepticum (MG) were isolated from lesions of infected birds. MG was also isolated from a blue jay (Cyanocitta cristata) that contracted conjunctivitis after being housed in a cage previously occupied by house finches with conjunctivitis, and from free-ranging American goldfinches (Carduelis tristis) in North Carolina in 1996. To investigate the molecular epidemiology of this outbreak, we produced DNA fingerprints of MG isolates by random amplification of polymorphic DNA (RAPD). We compared MG isolates from songbirds examined from 1994 through 1996 in 11 states, representing three host species, with vaccine and reference strains and with contemporary MG isolates from commercial poultry. All MG isolates from songbirds had RAPD banding patterns identical to each other but different from other strains and isolates tested. These results indicate that the outbreak of MG in songbirds is caused by the same strain, which suggests a single source; the outbreak is not caused by the vaccine or reference strains analyzed; and MG infection has not been shared between songbirds and commercial poultry

    The reaction 2H(p,pp)n in three kinematical configurations at E_p = 16 MeV

    Full text link
    We measured the cross sections of the 2^2H(p,pp)n breakup reaction at Ep_p=16 MeV in three kinematical configurations: the np final-state interaction (FSI), the co-planar star (CST), and an intermediate-star (IST) geometry. The cross sections are compared with theoretical predictions based on the CD Bonn potential alone and combined with the updated 2π\pi-exchange Tucson-Melbourne three-nucleon force (TM99'), calculated without inclusion of the Coulomb interaction. The resulting excellent agreement between data and pure CD Bonn predictions in the FSI testifies to the smallness of three-nucleon force (3NF) effects as well as the insignificance of the Coulomb force for this particular configuration and energy. The CST also agrees well whereas the IST results show small deviations between measurements and theory seen before in the pd breakup space-star geometries which point to possible Coulomb effects. An additional comparison with EFT predictions (without 3NF) up to order N3^3LO shows excellent agreement in the FSI case and a rather similar agreement as for CD Bonn in the CST and IST situations.Comment: 20 pages, 11 figure

    Coherent coupling of two quantum dots embedded in an Aharonov-Bohm ring

    Full text link
    We define two laterally gated small quantum dots (~ 15 electrons) in an Aharonov-Bohm geometry in which the coupling between the two dots can be broadly changed. For weakly coupled quantum dots we find Aharonov-Bohm oscillations. In an intermediate coupling regime we concentrate on the molecular states of the double dot and extract the magnetic field dependence of the coherent coupling.Comment: 6 pages, 4 figure

    Full capacitance-matrix effects in driven Josephson-junction arrays

    Full text link
    We study the dynamic response to external currents of periodic arrays of Josephson junctions, in a resistively capacitively shunted junction (RCSJ) model, including full capacitance-matrix effects}. We define and study three different models of the capacitance matrix Cr,rC_{\vec{r},\vec{r}'}: Model A includes only mutual capacitances; Model B includes mutual and self capacitances, leading to exponential screening of the electrostatic fields; Model C includes a dense matrix Cr,rC_{\vec{r},\vec{r}'} that is constructed approximately from superposition of an exact analytic solution for the capacitance between two disks of finite radius and thickness. In the latter case the electrostatic fields decay algebraically. For comparison, we have also evaluated the full capacitance matrix using the MIT fastcap algorithm, good for small lattices, as well as a corresponding continuum effective-medium analytic evaluation of a finite voltage disk inside a zero-potential plane. In all cases the effective Cr,rC_{\vec{r},\vec{r}'} decays algebraically with distance, with different powers. We have then calculated current voltage characteristics for DC+AC currents for all models. We find that there are novel giant capacitive fractional steps in the I-V's for Models B and C, strongly dependent on the amount of screening involved. We find that these fractional steps are quantized in units inversely proportional to the lattice sizes and depend on the properties of Cr,rC_{\vec{r},\vec{r}'}. We also show that the capacitive steps are not related to vortex oscillations but to localized screened phase-locking of a few rows in the lattice. The possible experimental relevance of these results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July 1, Vol. 58, Phys. Rev. B 1998 All PS figures include

    Regulation of surface architecture by symbiotic bacteria mediates host colonization

    Get PDF
    Microbes occupy countless ecological niches in nature. Sometimes these environments may be on or within another organism, as is the case in both microbial infections and symbiosis of mammals. Unlike pathogens that establish opportunistic infections, hundreds of human commensal bacterial species establish a lifelong cohabitation with their hosts. Although many virulence factors of infectious bacteria have been described, the molecular mechanisms used during beneficial host–symbiont colonization remain almost entirely unknown. The novel identification of multiple surface polysaccharides in the important human symbiont Bacteroides fragilis raised the critical question of how these molecules contribute to commensalism. To understand the function of the bacterial capsule during symbiotic colonization of mammals, we generated B. fragilis strains deleted in the global regulator of polysaccharide expression and isolated mutants with defects in capsule expression. Surprisingly, attempts to completely eliminate capsule production are not tolerated by the microorganism, which displays growth deficits and subsequent reversion to express capsular polysaccharides. We identify an alternative pathway by which B. fragilis is able to reestablish capsule production and modulate expression of surface structures. Most importantly, mutants expressing single, defined surface polysaccharides are defective for intestinal colonization compared with bacteria expressing a complete polysaccharide repertoire. Restoring the expression of multiple capsular polysaccharides rescues the inability of mutants to compete for commensalism. These findings suggest a model whereby display of multiple capsular polysaccharides provides essential functions for bacterial colonization during host–symbiont mutualism

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method

    Get PDF
    Exact solutions for vibrational levels of diatomic molecules via the Morse potential are obtained by means of the asymptotic iteration method. It is shown that, the numerical results for the energy eigenvalues of 7Li2^{7}Li_{2} are all in excellent agreement with the ones obtained before. Without any loss of generality, other states and molecules could be treated in a similar way

    Potential Impact of Time Trend of Life-Style Factors on Cardiovascular Disease Burden in China

    Get PDF
    Cardiovascular disease (CVD) is a leading cause of death in China. Evaluation of risk factors and their impacts on disease burden is important for future public health initiatives and policy making

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.
    corecore