156 research outputs found

    Repeated slip along a major decoupling horizon between crustal-scale nappesof the Central Western Carpathians documented in the Ochtinà tectonicmélange

    No full text
    International audienceThe Ochtiná Unit is situated in the ENE-WSW-trending contact zone between two crustal-scale nappes, the upper Gemer Unit and the lower Vepor Unit, in the Central Western Carpathians, Slovakia. The Ochtiná Unit consists mainly of Carboniferous phyllitic schists and sandstones enclosing lenses of diverse lithological nature and contrasting metamorphic history. Peak PT conditions obtained by means of phase equilibrium modelling from lenses of amphibolite and chloritoid schist in this unit indicate 500-600 °C and 4-6.5 kbar and 500-520 °C and 9-11 kbar, respectively. These PT conditions contrast not only with the greenschist-facies metamorphism of dominant phyllite but also with each other documenting two distinct metamorphic field gradients related to Variscan and Alpine metamorphic events. Geochemical data reveal an affinity of the amphibolite lenses to similar Variscan rocks in the basement of the upper Gemer Unit and of the chloritoid schist to similar Alpine rocks in the cover of the lower Vepor Unit. Such heterogeneous lithological and metamorphic record is consistent with a block-in-matrix rock arrangement and the Ochtiná Unit is interpreted as deep seated tectonic mélange. The mélange evolved via repeated slip along the rheologically weak sediments of the Ochtiná Unit during the building and collapse of the Eo-Alpine orogenic wedge of the Central Western Carpathians. Deformation record indicates that the mélange separates two distinct structural domains marked by a decoupled behaviour, i.e. the orogenic suprastructure represented by the Gemer Unit and the infrastructure represented by the Vepor Unit. With this respect, the Ochtiná Unit represents an unusual example of a suprastructure-infrastructure transition zone with its position being controlled by the mechanical weakness of this sedimentary horizon and not by the temperature-dependent rheological transition

    Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt)

    Get PDF
    27 p.International audience[1] The contribution of lateral forces, vertical load, gravity redistribution and erosion to the origin of mantled gneiss domes in internal zones of orogens remains debated. In the Orlica-Snieznik dome (Moldanubian zone, European Variscan belt), the polyphase tectono-metamorphic history is initially characterized by the development of subhorizontal fabrics associated with medium- to high-grade metamorphic conditions in different levels of the crust. It reflects the eastward influx of a Saxothuringian-type passive margin sequence below a Teplá-Barrandian upper plate. The ongoing influx of continental crust creates a thick felsic orogenic root with HP rocks and migmatitic orthogneiss. The orogenic wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale folding of the orogenic infrastructure. The resulting kilometre-scale folding is associated with the variable burial of the middle crust in synforms and the exhumation of the lower crust in antiforms. These localized vertical exchanges of material and heat are coeval with a larger crustal-scale folding of the whole infrastructure generating a general uplift of the dome. It is exemplified by increasing metamorphic conditions and younging of 40Ar/39Ar cooling ages toward the extruded migmatitic subdomes cored by HP rocks. The vertical growth of the dome induces exhumation by pure shear-dominated ductile thinning laterally evolving to non-coaxial detachment faulting, while erosion feeds the surrounding sedimentary basins. Modeling of the Bouguer anomaly grid is compatible with crustal-scale mass transfers between a dense superstructure and a lighter infrastructure. The model implies that the Moldanubian Orlica-Snieznik mantled gneiss dome derives from polyphase recycling of Saxothuringian material

    CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes

    Get PDF
    ABSTRACT: A major goal in drug design is the improvement of computational methods for docking and scoring. The Community Structure Activity Resource (CSAR) aims to collect available data from industry and academia which may be used for this purpose (www.csardock.org). Also, CSAR is charged with organizing community-wide exercises based on the collected data. The first of these exercises was aimed to gauge the overall state of docking and scoring, using a large and diverse data set of protein ligand complexes. Participants were asked to calculate the affinity of the complexes as provided and then recalculate with changes which may improve their specific method. This first data set was selected from existing PDB entries which had binding data (Kd or Ki) in Binding MOAD, augmented with entries from PDBbind. The final data set contains 343 diverse protein ligand complexes and spans 14 pKd. Sixteen proteins have three or more complexes in the data set, from which a user could start an inspection of congeneric series. Inherent experimental error limits the possible correlation between scores and measured affinity; R 2 is limited to ∼0.9 when fitting to the data set without over parametrizing. R 2 is limited to ∼0.8 when scoring the data set with a method trained on outside data. The details of how the data set was initially selected, and the process by which it matured t

    A Collective Variable for the Rapid Exploration of Protein Druggability

    Get PDF
    An efficient molecular simulation methodology has been developed for the evaluation of the druggability (ligandability) of a protein. Previously proposed techniques were designed to assess the druggability of crystallographic structures and cannot be tightly coupled to molecular dynamics (MD) simulations. By contrast, the present approach, JEDI (<u>J</u>ust <u>E</u>xploring <u>D</u>ruggability at protein <u>I</u>nterfaces), features a druggability potential made of a combination of empirical descriptors that can be collected “on-the-fly” during MD simulations. Extensive validation studies indicate that JEDI analyses discriminate druggable and nondruggable protein binding site conformations with accuracy similar to alternative methodologies, and at a fraction of the computational cost. Since the JEDI function is continuous and differentiable, the druggability potential can be used as collective variable to rapidly detect cryptic druggable binding sites in proteins with a variety of MD free energy methods. Protocols for applications to flexible docking problems are outlined

    Inverse ductile thinning via lower crustal flow and fold-induced doming in the West Carpathian Eo-Alpine collisional wedge

    No full text
    International audienceContinental core complexes are generally interpreted to result from extensional doming due to gravity-driven upflow of lower crust. In contrast, the Vepor Dome is characterized by the lack of inverted density profile and relatively cold metamorphic field gradient which precludes an activation of Rayleigh-Taylor instability. Instead, the crustal structure of the Vepor Unit is marked by dense and weak metapelitic lower crust and light and strong granitoid upper crust inherited from Variscan nappe stacking. It is shown that the Cretaceous Eo-Alpine tectonic evolution of the Vepor Dome is controlled by the dynamics of two neighboring mechanically strong continental blocks, i.e., the overthrusting of the suprastructural Gemer Unit from the south and the underthrusting of the Fatric basement from the north. Structural, metamorphic and geochronological data from the Vepor Unit imply two main phases of the convergent process: (1) Lower Cretaceous crustal thickening due to overthrusting and internal deformation of the Gemer Unit together with upper crustal folding in the Vepor Unit led to the progressive development of the orogenic front parallel pressure gradient. The instantaneous response of the lower crustal and low-viscosity metapelites led to an along-strike lower crustal flow accompanied by prograde Barrovian-type metamorphism. (2) As the south vergent underthrusting of the Fatric basement propagated to greater depths during the Upper Cretaceous, the convergent process switched from top driven to bottom driven, and the exhumation of the lower crust occurred via polyharmonic folding. Overall doming of the Vepor Unit induced upper crustal detachment faulting and eastward unroofing of the dome

    A numerical model of exhumation of the orogenic lower crust in the Bohemian Massif during the Variscan orogeny

    No full text
    International audienceWe present a numerical model of the main phase (370-335 Ma) of the Variscan orogeny in the central part of the Bohemian Massif. The crustal deformation in our model is driven by radiogenic heating in the felsic lower crust, the lateral contraction of the Moldanubian domain due to convergence with the Saxothuringian plate (in the early stage of orogeny), and the indentation of the Brunovistulian basement into the weakened orogenic root (in the late stage). Our model explains the main geological events inferred from the geological record in the Moldanubian domain: formation of the orogenic plateau and onset of sedimentation at about 345 Ma, rapid exhumation of the orogenic lower crust at about 340 Ma and subsurface flow of crustal material (similar to 335 Ma and later). The results of our modeling suggest that delamination of the lithosphere, often invoked to explain the high temperature metamorphism in the orogenic lower crust of the Bohemian Massif, is not the only physical mechanism which can transfer a sufficient amount of heat to the crust to trigger its overturn
    corecore