5,417 research outputs found

    Longer-term mortality following SARS-CoV-2 infection in people with severe mental illness: retrospective case-matched study.

    Get PDF
    Persisting symptoms and dysfunction after SARS-CoV-2 infection have frequently been observed. However, information on the aftermath of COVID-19 is inadequate. We followed up people with severe mental illness (SMI) infected with SARS-CoV-2, and evaluated their longer-term mortality, using data from Cambridgeshire and Peterborough NHS Foundation Trust, UK. We examined the time course and duration of mortality risk from the point of diagnosis. After SARS-CoV-2 infection, people with SMI had a substantially higher risk of death (hazard ratio (HR) = 5.16, 95% confidence interval (CI) 1.56-17.03; P = 0.007) during the first 28 days and during the following 28-60 days (HR = 2.96, 95% CI 1.21-7.26; P = 0.018) than those without infection, but after 60 days the additional risk of death was no longer significant (HR = 2.33, 95% CI 0.83-6.53; P = 0.107)

    Geometric Phases, Symmetries of Dynamical Invariants, and Exact Solution of the Schr\"odinger Equation

    Get PDF
    We introduce the notion of the geometrically equivalent quantum systems (GEQS) as quantum systems that lead to the same geometric phases for a given complete set of initial state vectors. We give a characterization of the GEQS. These systems have a common dynamical invariant, and their Hamiltonians and evolution operators are related by symmetry transformations of the invariant. If the invariant is TT-periodic, the corresponding class of GEQS includes a system with a TT-periodic Hamiltonian. We apply our general results to study the classes of GEQS that include a system with a cranked Hamiltonian H(t)=eiKtH0eiKtH(t)=e^{-iKt}H_0e^{iKt}. We show that the cranking operator KK also belongs to this class. Hence, in spite of the fact that it is time-independent, it leads to nontrivial cyclic evolutions and geometric phases. Our analysis allows for an explicit construction of a complete set of nonstationary cyclic states of any time-independent simple harmonic oscillator. The period of these cyclic states is half the characteristic period of the oscillator.Comment: Accepted for publication in J. Phys.

    Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    Get PDF
    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C6+, O8+, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented.Comment: 7 pages, 7 figure

    The role of E1-E2 interplay in multiphonon Coulomb excitation

    Get PDF
    In this work we study the problem of a charged particle, bound in a harmonic-oscillator potential, being excited by the Coulomb field from a fast charged projectile. Based on a classical solution to the problem and using the squeezed-state formalism we are able to treat exactly both dipole and quadrupole Coulomb field components. Addressing various transition amplitudes and processes of multiphonon excitation we study different aspects resulting from the interplay between E1 and E2 fields, ranging from classical dynamic polarization effects to questions of quantum interference. We compare exact calculations with approximate methods. Results of this work and the formalism we present can be useful in studies of nuclear reaction physics and in atomic stopping theory.Comment: 10 pages, 6 figure

    A multispectral microscope for in vivo oximetry of rat dorsal spinal cord vasculature

    Get PDF
    Quantification of blood oxygen saturation (SO2) in vivo is essential for understanding the pathogenesis of diseases in which hypoxia is thought to play a role, including inflammatory disorders such as multiple sclerosis (MS) and rheumatoid arthritis (RA). We describe a low-cost multispectral microscope and oximetry technique for calibration-free absolute oximetry of surgically exposed blood vessels in vivo. We imaged the vasculature of the dorsal spinal cord in healthy rats, and varied inspired oxygen (FiO2) in order to evaluate the sensitivity of the imaging system to changes in SO2. The venous SO2 was calculated as 67.8  ±  10.4% (average  ±  standard deviation), increasing to 83.1  ±  11.6% under hyperoxic conditions (100% FiO2) and returning to 67.4  ±  10.9% for a second normoxic period; the venous SO2 was 50.9  ±  15.5% and 29.2  ±  24.6% during subsequent hypoxic states (18% and 15% FiO2 respectively). We discuss the design and performance of our multispectral imaging system, and the future scope for extending this oximetry technique to quantification of hypoxia in inflamed tissue

    Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus x domestica)

    Get PDF
    Bitter pit is one of the most economically important physiological disorders affecting apple fruit production, causing soft discrete pitting of the cortical flesh of the apple fruits which renders them unmarketable. The disorder is heritable; however, the environment and cultural practices play a major role in expression of symptoms. Bitter pit has been shown to be controllable to a certain extent using calcium sprays and dips; however, their use does not entirely prevent the incidence of the disorder. Previously, bitter pit has been shown to be controlled by two dominant genes, and markers on linkage group 16 of the apple genome were identified that were significantly associated with the expression of bitter pit symptoms in a genome-wide association study. In this investigation, we identified a major QTL for bitter pit defined by two microsatellite (SSR) markers. The association of the SSRs with the bitter pit locus, and their ability to predict severe symptom expression, was confirmed through screening of individuals with stable phenotypic expression from an additional mapping progeny. The data generated in this current study suggest a two gene model could account for the control of bitter pit symptom expression; however, only one of the loci was detectable, most likely due to dominance of alleles carried by both parents of the mapping progeny used. The SSR markers identified are cost-effective, robust and multi-allelic and thus should prove useful for the identification of seedlings with resistance to bitter pit using marker-assisted selection in apple breeding programs

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    Get PDF
    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1- associated disease phenotypes in humans
    corecore