472 research outputs found

    Preliminary genetic analyses of important musculoskeletal conditions of thoroughbred racehorses in Hong Kong

    Get PDF
    A retrospective cohort study of important musculoskeletal conditions of Thoroughbred racehorses was conducted using health records generated over a 15 year period (n = 5062, 1296 sires). The prevalence of each condition in the study population was: fracture, 13%; osteoarthritis, 10%; suspensory ligament injury, 10%; and tendon injury, 19%. Linear and logistic sire and animal regression models were built to describe the binary occurrence of these musculoskeletal conditions, and to evaluate the significance of possible environmental risk factors. The heritability of each condition was estimated using residual maximum likelihood (REML). Bivariate mixed models were used to generate estimates of genetic correlations between each pair of conditions.<p></p> Heritability estimates of fracture, osteoarthritis, suspensory ligament and tendon injury were small to moderate (range: 0.01–0.20). Fracture was found to be positively genetically correlated with both osteoarthritis and suspensory ligament injury. These results suggest that there is a significant genetic component involved in the risk of the studied conditions. Due to positive genetic correlations, a reduction in prevalence of one of the correlated conditions may effect a reduction in risk of the other condition.<p></p&gt

    Switching intermolecular interactions by confinement in carbon nanotubes

    Get PDF
    The encapsulation of trityl-functionalised C60 molecules inside carbon nanotubes drastically affects the intermolecular interactions for this species. Whilst the orientations of molecules in the crystal are often controlled by thermodynamics, the molecular orientations in nanotubes are a result of kinetic control imposed by the mechanism of entry into and encapsulation within the nanotube

    Optical control of photon tunneling through an array of nanometer scale cylindrical channels

    Full text link
    We report first observation of photon tunneling gated by light at a different wavelength in an artificially created array of nanometer scale cylindrical channels in a thick gold film. Polarization properties of gated light provide strong proof of the enhanced nonlinear optical mixing in nanometric channels involved in the process. This suggests the possibility of building a new class of "gated" photon tunneling devices for massive parallel all-optical signal and image processing.Comment: 4 pages, 4 figure

    Social determinants of content selection in the age of (mis)information

    Full text link
    Despite the enthusiastic rhetoric about the so called \emph{collective intelligence}, conspiracy theories -- e.g. global warming induced by chemtrails or the link between vaccines and autism -- find on the Web a natural medium for their dissemination. Users preferentially consume information according to their system of beliefs and the strife within users of opposite narratives may result in heated debates. In this work we provide a genuine example of information consumption from a sample of 1.2 million of Facebook Italian users. We show by means of a thorough quantitative analysis that information supporting different worldviews -- i.e. scientific and conspiracist news -- are consumed in a comparable way by their respective users. Moreover, we measure the effect of the exposure to 4709 evidently false information (satirical version of conspiracy theses) and to 4502 debunking memes (information aiming at contrasting unsubstantiated rumors) of the most polarized users of conspiracy claims. We find that either contrasting or teasing consumers of conspiracy narratives increases their probability to interact again with unsubstantiated rumors.Comment: misinformation, collective narratives, crowd dynamics, information spreadin

    Safety, feasibility, and effectiveness of virtual pulmonary rehabilitation in the real world

    Get PDF
    Purpose: To assess the feasibility, safety, and effectiveness of a VIrtual PulmonAry Rehabilitation (VIPAR) program in a real-world setting. Patients and methods: Twenty-one patients with stable chronic lung disease at a spoke site received (VIPAR) through live video conferencing with a hub where 24 patients were receiving 14 sessions of standard, outpatient, multi-disciplinary pulmonary rehabilitation (PR) in a hospital. We studied three such consecutive PR programs with 6–10 patients at each site. The hub had a senior physiotherapist, occupational therapist, exercise assistant, and guest lecturer, and the spoke usually had only an exercise instructor and nurse present. Uptake, adverse events (AEs), and early clinical changes were compared within and between groups. Travel distances were estimated using zip codes. Results: Mean attendance was 11.0 sessions in the hub and 10.5 sessions in the spoke (P=0.65). There was a single (mild) AE (hypoglycemia) in all three hub programs and no AEs in the three spoke programs. Mean COPD Assessment Test scores improved from 25.3 to 21.5 in the hub (P<0.001, 95% CI 2.43–5.17) and from 23.4 to 18.8 (P<0.001, 2.23–7.02) in the spoke group, with no difference between the groups (P=0.51, -3.35–1.70). Mean incremental shuttle walk test scores improved from 142 to 208 m (P<0.001, 75–199) in the hub and from 179 to 316 minutes in the spoke (P<0.001, 39.3–92.4), with a greater improvement in the spoke (P=0.025, 9.31–133). Twenty-one patients saved a total of 8,609.8 miles over the three programs by having the PR in their local spoke, rather than traveling to the usual nearest (hospital) hub. Conclusion: Video-conferencing, which links a local site to a standard PR program is feasible, safe, and demonstrates at least equivalent short-term clinical gains. Throughput can be increased, with less staffing ratios and significantly less traveling

    Innovative solutions to novel drug development in mental health

    Get PDF
    There are many new advances in neuroscience and mental health which should lead to a greater understanding of the neurobiological dysfunction in neuropsychiatric disorders and new developments for early, effective treatments. To do this, a biomarker approach combining genetic, neuroimaging, cognitive and other biological measures is needed. The aim of this article is to highlight novel approaches for pharmacological and non-pharmacological treatment development. This article suggests approaches that can be taken in the future including novel mechanisms with preliminary clinical validation to provide a toolbox for mechanistic studies and also examples of translation and back-translation. The review also emphasizes the need for clinician-scientists to be trained in a novel way in order to equip them with the conceptual and experimental techniques required, and emphasizes the need for private-public partnership and pre-competitive knowledge exchange. This should lead the way for important new holistic treatment developments to improve cognition, functional outcome and well-being of people with neuropsychiatric disorders

    Colourful coexistence of red and green picocyanobacteria in lakes and seas

    Get PDF
    Hutchinson's paradox of the plankton inspired many studies on the mechanisms of species coexistence. Recent laboratory experiments showed that partitioning of white light allows stable coexistence of red and green picocyanobacteria. Here, we investigate to what extent these laboratory findings can be extrapolated to natural waters. We predict from a parameterized competition model that the underwater light colour of lakes and seas provides ample opportunities for coexistence of red and green phytoplankton species. To test this prediction, we sampled picocyanobacteria of 70 aquatic ecosystems, ranging from clear blue oceans to turbid brown peat lakes. As predicted, red picocyanobacteria dominated in clear waters, whereas green picocyanobacteria dominated in turbid waters. We found widespread coexistence of red and green picocyanobacteria in waters of intermediate turbidity. These field data support the hypothesis that niche differentiation along the light spectrum promotes phytoplankton biodiversity, thus providing a colourful solution to the paradox of the plankton

    Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction: An Individual-Participant-Data Meta-Analysis

    Get PDF
    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary measures from longitudinal modeling of the repeated measurements were compared with models using measurements from a single time point. Risk discrimination (Cindex) and net reclassification were calculated, and changes in C-indices were meta-analyzed across studies. Compared with the single-time-point model, the cumulative means and longitudinal models increased the C-index by 0.0040 (95% confidence interval (CI): 0.0023, 0.0057) and 0.0023 (95% CI: 0.0005, 0.0042), respectively. Reclassification was also improved in both models; compared with the single-time-point model, overall net reclassification improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction

    Strong evidences of hadron acceleration in Tycho's Supernova Remnant

    Get PDF
    Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information for understanding particle acceleration and non-thermal emission in SNRs. We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics and multi-wavelength emission by accounting for particle acceleration at the forward shock via first order Fermi mechanism. We adopt here a quick and reliable semi-analytical approach to non-linear diffusive shock acceleration which includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. We find that Tycho's forward shock is accelerating protons up to at least 500 TeV, channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ~300 micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction {\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV gamma-ray spectrum as due to the decay of neutral pions produced in nuclear collisions between accelerated nuclei and the background gas. The self-consistency of such an hadronic scenario, along with the fact that the concurrent leptonic mechanism cannot reproduce both the shape and the normalization of the detected the gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic
    corecore