6,091 research outputs found
Collagen gel as a 3D in vitro tissue model for ameloblastoma studies
Ameloblastoma is a rare locally invasive epithelial odontogenic tumour of the jaw which can cause significant and debilitating bone destruction. In vitro studies of ameloblastoma are sparse in the literature, and little is known regarding patterns of ameloblastoma cell growth and invasion, as well as relevant gene and protein expression. This study aims to (i) use plastic-compressed collagen gels as a robust and relevant biomimetic to culture ameloblastoma cells in a 3D in vitro tissue model [1] and (ii) perform histology, immunohistochemistry (IHC) and gene expression assays to characterise tissue remodelling, cell growth and invasiveness
Inferring Population Preferences via Mixtures of Spatial Voting Models
Understanding political phenomena requires measuring the political
preferences of society. We introduce a model based on mixtures of spatial
voting models that infers the underlying distribution of political preferences
of voters with only voting records of the population and political positions of
candidates in an election. Beyond offering a cost-effective alternative to
surveys, this method projects the political preferences of voters and
candidates into a shared latent preference space. This projection allows us to
directly compare the preferences of the two groups, which is desirable for
political science but difficult with traditional survey methods. After
validating the aggregated-level inferences of this model against results of
related work and on simple prediction tasks, we apply the model to better
understand the phenomenon of political polarization in the Texas, New York, and
Ohio electorates. Taken at face value, inferences drawn from our model indicate
that the electorates in these states may be less bimodal than the distribution
of candidates, but that the electorates are comparatively more extreme in their
variance. We conclude with a discussion of limitations of our method and
potential future directions for research.Comment: To be published in the 8th International Conference on Social
Informatics (SocInfo) 201
Novel scaffolds for tissue engineering of human skeletal muscles
Tissue engineering is a
multidisciplinary approach aimed at producing new
organs and tissues for implantation in order to
circumvent the limitations imposed by current
techniques such as surgical tissue transfer.
Structure begets function and highly ordered
skeletal muscle (SkM) consists of elongated,
multinucleate muscle cells (fibres) that are arranged
in bundles surrounded by connective tissue sheaths.
It is therefore of no surprise that tissue engineered
SkM complexes are often designed around fibre
containing scaffolds. This work is the natural
continuation of strategies introduced at TCES 200
Neural and Aneural Regions Generated by the Use of Chemical Surface Coatings
The disordered environment found in conventional neural cultures impedes various applications where cell directionality is a key process for functionality. Neurons are highly specialized cells known to be greatly dependent on interactions with their surroundings. Therefore, when chemical cues are incorporated on the surface material, a precise control over neuronal behavior can be achieved. Here, the behavior of SH-SY5Y neurons on a variety of self-assembled monolayers (SAMs) and polymer brushes both in isolation and combination to promote cellular spatial control was determined. APTES and BIBB coatings promoted the highest cell viability, proliferation, metabolic activity, and neuronal maturation, while low cell survival was seen on PKSPMA and PMETAC surfaces. These cell-attractive and repulsive surfaces were combined to generate a binary BIBB-PKSPMA coating, whereby cellular growth was restricted to an exclusive neural region. The utility of these coatings when precisely combined could act as a bioactive/bioinert surface resulting in a biomimetic environment where control over neuronal growth and directionality can be achieved
In vitro 3D tissue modelling: Insights into ameloblastoma pathogenesis
Ameloblastoma is a rare, benign oral tumour. Tumours develop within the jaw bone and are highly destructive and invasive, with cells migrating into the jaw and surrounding soft tissue. This is a little-understood disease which if left untreated causes dramatic bone destruction and maxillofacial disfigurement. Current treatment is radical surgery, often resulting in extensive loss of function and tissue. An ameloblastoma-derived cell line, AM-1, has been established [1]. Cells were isolated from a human tumour and immortalised by the addition of HPV-16 DNA. This study aims to (i) make a 3D in vitro ameloblastoma disease model, using plastic-compressed collagen gel [2] seeded with AM-1 cells, and (ii) use this bone construct to characterise tissue remodelling, cell growth and invasiveness
Impaired hypertrophy in myoblasts is improved with testosterone administration
We investigated the ability of testosterone (T) to restore differentiation in multiple population doubled (PD) murine myoblasts, previously shown to have reduced differentiation in monolayer and bioengineered skeletal muscle cultures vs. their parental controls (CON) (Sharples et al., 2011, 2012 [7] and [26]). Cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± PI3K inhibitor (LY294002) for 72 h and 7 days (early and late muscle differentiation respectively). Morphological analyses were performed to determine myotube number, diameter (μm) and myonuclear accretion as indices of differentiation and myotube hypertrophy. Changes in gene expression for myogenin, mTOR and myostatin were also performed. Myotube diameter in CON and PD cells increased from 17.32 ± 2.56 μm to 21.02 ± 1.89 μm and 14.58 ± 2.66 μm to 18.29 ± 3.08 μm (P ≤ 0.05) respectively after 72 h of T exposure. The increase was comparable in both PD (+25%) and CON cells (+21%) suggesting a similar intrinsic ability to respond to exogenous T administration. T treatment also significantly increased myonuclear accretion (% of myotubes expressing 5+ nuclei) in both cell types after 7 days exposure (P ≤ 0.05). Addition of PI3K inhibitor (LY294002) in the presence of T attenuated these effects in myotube morphology (in both cell types) suggesting a role for the PI3K pathway in T stimulated hypertrophy. Finally, PD myoblasts showed reduced responsiveness to T stimulated mRNA expression of mTOR vs. CON cells and T also reduced myostatin expression in PD myoblasts only. The present study demonstrates testosterone administration improves hypertrophy in myoblasts that basally display impaired differentiation and hypertrophic capacity vs. their parental controls, the action of testosterone in this model was mediated by PI3K/Akt pathway
Comparison between Suitable Priors for Additive Bayesian Networks
Additive Bayesian networks are types of graphical models that extend the
usual Bayesian generalized linear model to multiple dependent variables through
the factorisation of the joint probability distribution of the underlying
variables. When fitting an ABN model, the choice of the prior of the parameters
is of crucial importance. If an inadequate prior - like a too weakly
informative one - is used, data separation and data sparsity lead to issues in
the model selection process. In this work a simulation study between two weakly
and a strongly informative priors is presented. As weakly informative prior we
use a zero mean Gaussian prior with a large variance, currently implemented in
the R-package abn. The second prior belongs to the Student's t-distribution,
specifically designed for logistic regressions and, finally, the strongly
informative prior is again Gaussian with mean equal to true parameter value and
a small variance. We compare the impact of these priors on the accuracy of the
learned additive Bayesian network in function of different parameters. We
create a simulation study to illustrate Lindley's paradox based on the prior
choice. We then conclude by highlighting the good performance of the
informative Student's t-prior and the limited impact of the Lindley's paradox.
Finally, suggestions for further developments are provided.Comment: 8 pages, 4 figure
Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors
We have previously highlighted the ability of testosterone to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy at 72hrs (after transfer to low serum media) via multiple population doublings (PD) vs. their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (Picropodophyllin/PPP, 150 nM) for 72 hrs and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-I, myoD and myogenin with increases in myostatin mRNA both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger increased in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. However, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed reduction in activity of ERK and Akt, perhaps suggesting that IGF-IR was transcriptionally regulated by AR. However, where testosterone increased AR protein content there was no increases observed in IGF-IR gene expression. Overall, this suggested that sufficient AR was important to enable normal gene expression of IGF-IR and downstream signalling, yet elevated levels of AR due to testosterone had no further effect on IGF-IR, despite testosterone increasing Akt abundance in the presence of IGF-IR inhibitor. In conclusion, testosterones ability to improve differentiation and myotube hypertrophy occurred predominately via increases in AR and Akt abundance in both CON and PD cells, with fusion impaired cells (PD) showing an increased responsiveness to T induced AR levels. Finally, T induced increases in myotube hypertrophy (but not early differentiation) occurred independently of upstream IGF-IR input, however it appears that normal AR function in basal conditions is required for adequate IGF-IR gene expression and downstream Akt abundance
Object Detection Through Exploration With A Foveated Visual Field
We present a foveated object detector (FOD) as a biologically-inspired
alternative to the sliding window (SW) approach which is the dominant method of
search in computer vision object detection. Similar to the human visual system,
the FOD has higher resolution at the fovea and lower resolution at the visual
periphery. Consequently, more computational resources are allocated at the
fovea and relatively fewer at the periphery. The FOD processes the entire
scene, uses retino-specific object detection classifiers to guide eye
movements, aligns its fovea with regions of interest in the input image and
integrates observations across multiple fixations. Our approach combines modern
object detectors from computer vision with a recent model of peripheral pooling
regions found at the V1 layer of the human visual system. We assessed various
eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD
performs on par with the SW detector while bringing significant computational
cost savings.Comment: An extended version of this manuscript was published in PLOS
Computational Biology (October 2017) at
https://doi.org/10.1371/journal.pcbi.100574
Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden
Abstract Background It has traditionally been thought that the pathological accumulation of tau in Alzheimer's disease and other tauopathies facilitates neurodegeneration, which in turn leads to cognitive impairment. However, recent evidence suggests that tau tangles are not the entity responsible for memory loss, rather it is an intermediate tau species that disrupts neuronal function. Thus, efforts to discover therapeutics for tauopathies emphasize soluble tau reductions as well as neuroprotection. Results Here, we found that neuroprotection alone caused by methylene blue (MB), the parent compound of the anti-tau phenothiaziazine drug, Rember™, was insufficient to rescue cognition in a mouse model of the human tauopathy, progressive supranuclear palsy (PSP) and fronto-temporal dementia with parkinsonism linked to chromosome 17 (FTDP17): Only when levels of soluble tau protein were concomitantly reduced by a very high concentration of MB, was cognitive improvement observed. Thus, neurodegeneration can be decoupled from tau accumulation, but phenotypic improvement is only possible when soluble tau levels are also reduced. Conclusions Neuroprotection alone is not sufficient to rescue tau-induced memory loss in a transgenic mouse model. Development of neuroprotective agents is an area of intense investigation in the tauopathy drug discovery field. This may ultimately be an unsuccessful approach if soluble toxic tau intermediates are not also reduced. Thus, MB and related compounds, despite their pleiotropic nature, may be the proverbial "magic bullet" because they not only are neuroprotective, but are also able to facilitate soluble tau clearance. Moreover, this shows that neuroprotection is possible without reducing tau levels. This indicates that there is a definitive molecular link between tau and cell death cascades that can be disrupted.http://deepblue.lib.umich.edu/bitstream/2027.42/78314/1/1750-1326-5-45.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/2/1750-1326-5-45.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78314/3/1750-1326-5-45-S1.PDFPeer Reviewe
- …
