Additive Bayesian networks are types of graphical models that extend the
usual Bayesian generalized linear model to multiple dependent variables through
the factorisation of the joint probability distribution of the underlying
variables. When fitting an ABN model, the choice of the prior of the parameters
is of crucial importance. If an inadequate prior - like a too weakly
informative one - is used, data separation and data sparsity lead to issues in
the model selection process. In this work a simulation study between two weakly
and a strongly informative priors is presented. As weakly informative prior we
use a zero mean Gaussian prior with a large variance, currently implemented in
the R-package abn. The second prior belongs to the Student's t-distribution,
specifically designed for logistic regressions and, finally, the strongly
informative prior is again Gaussian with mean equal to true parameter value and
a small variance. We compare the impact of these priors on the accuracy of the
learned additive Bayesian network in function of different parameters. We
create a simulation study to illustrate Lindley's paradox based on the prior
choice. We then conclude by highlighting the good performance of the
informative Student's t-prior and the limited impact of the Lindley's paradox.
Finally, suggestions for further developments are provided.Comment: 8 pages, 4 figure