856 research outputs found

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Radiofrequency ablation of ventricular tachycardia in Anderson–Fabry disease : a case series

    Get PDF
    Background Cardiac involvement in Anderson–Fabry disease (AFD) can lead to arrhythmia, including ventricular tachycardia (VT). The literature on radiofrequency ablation (RFA) for the treatment of VT in AFD disease is limited. Case summary We discuss RFA of drug-refractory VT electrical storm in three males with AFD. The first patient (53 years old) had extensive involvement of the inferolateral left ventricle (LV) demonstrated with cardiac magnetic resonance imaging (CMRI), with a left ventricular ejection fraction (LVEF) of 35%. Two VT ablation procedures were performed. At the first procedure, the inferobasal endocardial LV was ablated. Furthermore, VT prompted a second ablation, where epicardial and endocardial sites were ablated. The acute arrhythmia burden was controlled but he died 4 months later despite appropriate implantable cardioverter-defibrillator therapies for VT. The second patient (67 years old) had full-thickness inferolateral involvement demonstrated with CMRI and LVEF of 45%. RFA of several endocardial left ventricular sites was performed. Over a 3-year follow-up, only brief non-sustained VT was identified, but he subsequently died of cardiac failure. Our third patient (69 years old), had an LVEF of 35%. He had RFA of endocardial left ventricular apical disease, but died 3 weeks later of cardiac failure. Discussion RFA of drug-refractory VT in AFD is feasible using standard electrophysiological mapping and ablation techniques, although the added clinical benefit is of questionable value. VT storm in the context of AFD may be a marker of end-stage disease

    A Bayesian view of the current status of dark matter direct searches

    Full text link
    Bayesian statistical methods offer a simple and consistent framework for incorporating uncertainties into a multi-parameter inference problem. In this work we apply these methods to a selection of current direct dark matter searches. We consider the simplest scenario of spin-independent elastic WIMP scattering, and infer the WIMP mass and cross-section from the experimental data with the essential systematic uncertainties folded into the analysis. We find that when uncertainties in the scintillation efficiency of Xenon100 have been accounted for, the resulting exclusion limit is not sufficiently constraining to rule out the CoGeNT preferred parameter region, contrary to previous claims. In the same vein, we also investigate the impact of astrophysical uncertainties on the preferred WIMP parameters. We find that within the class of smooth and isotropic WIMP velocity distributions, it is difficult to reconcile the DAMA and the CoGeNT preferred regions by tweaking the astrophysics parameters alone. If we demand compatibility between these experiments, then the inference process naturally concludes that a high value for the sodium quenching factor for DAMA is preferred.Comment: 37 pages, 14 figures and 7 tables. Replacement for matching the version accepted for publicatio

    Nodal collocation method for the multidimensional PL equations applied to neutron transport source problems

    Full text link
    A PL spherical harmonics-nodal collocation method is applied to the solution of the multidimensional neutron source transport equation. Vacuum boundary conditions are approximated by setting Marshak's conditions. The method is applied to several 1D, 2D and 3D problems with isotropic fixed source and with isotropic and anisotropic scattering. These problems are chosen to test this method in limit conditions, showing that in some cases a high order PLP_L approximation is required to obtain accurate results and convergence. Results are also compared with the ones provided by several reference codes showing good agreement. It is also shown that Marshak's approximation to vacuum boundary conditions gives the same results that simulating vacuum with a purely absorbing medium and setting zero flux boundary conditions.This work has been partially supported by the Spanish Ministerio de Economia y Competitividad under project ENE2011-22823, and the Generalitat Valenciana under project PROMETEO11/2014/008.Capilla Romá, MT.; Talavera Usano, CF.; Ginestar Peiro, D.; Verdú Martín, GJ. (2016). Nodal collocation method for the multidimensional PL equations applied to neutron transport source problems. Annals of Nuclear Energy. 87:89-100. https://doi.org/10.1016/j.anucene.2015.07.040S891008

    Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor

    Full text link
    We construct the non-linear realized Lagrangian for the Goldstone Bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the underlying gauge group. We concentrate on the Minimal Walking Technicolor quantum number assignments with respect to the standard model symmetries. We demonstrate that for, any choice of the quantum numbers, consistent with gauge and Witten anomalies the spectrum of the pseudo Goldstone Bosons contains electrically doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B

    Ocular Vaccinia Infection in Laboratory Worker, Philadelphia, 2004

    Get PDF
    We report a case of ocular vaccinia infection in an unvaccinated laboratory worker. The patient was infected by a unique strain used in an experiment performed partly outside a biosafety cabinet. Vaccination should continue to be recommended, but laboratories with unvaccinated workers should also implement more stringent biosafety practices
    • …
    corecore