1,623 research outputs found

    The antiquity of leprosy in Britain : the skeletal evidence.

    Get PDF

    Characterising variations in the salinity of deep groundwater systems: A case study from Great Britain (GB)

    Get PDF
    Study region The study region is Great Britain (GB), a small non-continental island landmass in North West Europe Study focus Data for Total Dissolved Solids (TDS) from groundwater samples can be used to characterise regional-scale variations in the quality of deep groundwater systems. Combined with information about typical well-depths, TDS data can be used to identify the presence of currently undeveloped fresh or brackish groundwater at depth that may require protection. This study considers the distribution of TDS with depth relative to sea level in the main GB aquifers and selected other key hydrogeological units, and demonstrates how useful insights can be obtained from data-led analyses of depth variations in groundwater chemistry if the regional context of hydrogeological systems is taken into account. New hydrogeological insights In GB, TDS varies over about five orders of magnitude, up to about 330,000 mg/L, with a general increase in mineralisation with depth. Overall, there is a transition from fresh 10,000 mg/L groundwater at about 700 m. Given that the 95 %tile depth of water wells is about 200 m, it is evident that there is currently undeveloped fresh groundwater at depth across large parts of the study area that may require protection, although it is inferred that TDS is not the only factor limiting exploitation and use of these deeper resources. As in this study, previous data-led analyses of fresh groundwater at depth have typically analysed TDS as depth below surface. However, if TDS data is analysed relative to sea level and in the context of regional hydrogeological information or models, additional insights can be gained on the distribution and controls on fresh groundwater at depth. Projecting TDS data into a 3D hydrogeological model of the study area shows that fresh groundwater at depth exhibits spatial coherence and is generally associated with relatively dee

    Modelling the groundwater nitrate legacy

    Get PDF
    This report details the findings of a project jointly funded by the British Geological Survey (BGS)and Defra through the Environment Agency. The overall aim of the work was to investigate the use of new models to inform decision-making on nitrate pollution in groundwater and the potential for incorporating unsaturated zone processes into the model currently used by the Environment Agency to delineate Nitrate Vulnerable Zones (NVZs). The potential application as supporting evidence for the Water Framework Directive has also been considered as nitrate pollution of groundwater remains the most significant reason for failure of WFD environmental objectives across England. The background to the nitrate legacy in groundwater and to the approaches to NVZ designation is described in Stuart et al. (2016). A series of developments to the BGS Nitrate Time Bomb (NTB) model have been made to improve a number of areas and approaches used in the first version of the model. The improvements included a spatially and temporally distributed nitrate input function, improved unsaturated zone thickness estimation, travel time attribution using a 1:250,000 geological map, estimating nitrate velocity in the unsaturated zone using groundwater recharge and aquifer properties, and introducing nitrate transport processes in low permeability superficial deposits and the saturated zones. These now allow the model to be applied at sub national scale. Using the improved model we have also made the first estimate of the mass of nitrate stored within the unsaturated zone and how this will change over time to improve UK nitrate budget estimates. The new version of the BGS NTB approach was applied in three case studies at different scales which compared its outcomes to the results from other modelling to demonstrate that the model can be benchmarked against the other nitrate modelling approaches: • For a basin-scale model of the Thames Chalk (Howden et al., 2010 & 2011). The NTB model gave comparable results to the original study back to 1925 provided that the same nitrate input function was used. Both models failed to predict nitrate concentrations in the Thames after the mid-1980s. • At the multi-borehole scale in the Permo-Triassic. A similar approach was used to the BGS model in the Eden Valley. This replicated the existing model for the area used by the Environment Agency both in terms of trend assessment and in the lack of dilution available within the aquifer block for blending purposes. • At the single borehole scale in the Chalk of the South Downs. The existing Environment and National Park model constructed by AMEC treated the unsaturated zone very similarly to the NTB model. This model provided a good fit to observed concentrations and confirmed the importance of estimating unsaturated zone delays. The assessment of modelled travel time from different areas of the catchment clearly illustrated the arable areas that would give a relatively rapid respond to changes in nitrate management. To illustrate the potential application of the BGS NTB model to support the Environment Agency’s NVZ designation methodology, areas of England were identified where unsaturated zone lags may be significant and where there is uncertainty in the NVZ designation. A major advantage of the BGS NTB model is that it covers the whole of England (and Wales) in a consistent way. A national overview of areas of designation uncertainty identified large areas of England, in particular the chalk outcrop of southern and eastern England. These were compared to areas with significant unsaturated zone travel time indicating where travel time may be contributing to designation uncertainty. The results suggest that the model may be useful both for identifying currently impacted groundwater which reflects legacy fertilizer application and also where additional designation could be needed as impacts have not yet emerged. Application of the model to support implementation of the WFD has also been considered and whilst no quantitative analysis has yet been carried out there are a number of ways that the model could be of significant benefit. For example, the model could be used to estimate when trend reversal would be expected to occur as a result of measures (at a specific location or across a groundwater body) and the time required to achieve good chemical status (alternative objective setting). A further application could be for scenario testing such as evaluating the effects of different land use/management measures as part of cost benefit analysis or considering the long term impacts of climate change through changing fertiliser use and/or recharge

    Monospecific helminth and arthropod infections in an urban population of brown rats from Doha, Qatar

    Get PDF
    Parasitic infections were studied for the first time in an urban population of brown rats (Rattus norvegicus) from Doha. Only one species of helminth was found, the cestode Hymenolepis diminuta, and one ectoparasite, the flea Xenopsylla astia, from a sample size of 136 rats (52 males and 84 females). The prevalence of H. diminuta was 17.6%, increasing with host age but not in relation to host sex nor season of capture. Host age was a key factor in influencing abundance of infection, although there was a significant three-way interaction with season and host sex arising through heavy infections in juvenile male rats in the summer. The prevalence of X. astia was 45.6%, although both prevalence and abundance of infestations were season and host age dependent. In the winter prevalence and abundance were similar in both host age and sex groups, but in the summer both parameters of infestation were markedly higher among juveniles compared with adults. We found evidence for some association between these two species: H. diminuta was more prevalent among rats with fleas than among those without, although this association was season-, and independently sex- and age-dependent. There were no quantitative interactions and reasons for this are discussed in relation to the foraging and breeding behaviour of the brown rat in Qatar

    Monospecific helminth and arthropod infections in an urban population of brown rats from Doha, Qatar

    Get PDF
    Parasitic infections were studied for the first time in an urban population of brown rats (Rattus norvegicus) from Doha. Only one species of helminth was found, the cestode Hymenolepis diminuta, and one ectoparasite, the flea Xenopsylla astia, from a sample size of 136 rats (52 males and 84 females). The prevalence of H. diminuta was 17.6%, increasing with host age but not in relation to host sex nor season of capture. Host age was a key factor in influencing abundance of infection, although there was a significant three-way interaction with season and host sex arising through heavy infections in juvenile male rats in the summer. The prevalence of X. astia was 45.6%, although both prevalence and abundance of infestations were season and host age dependent. In the winter prevalence and abundance were similar in both host age and sex groups, but in the summer both parameters of infestation were markedly higher among juveniles compared with adults. We found evidence for some association between these two species: H. diminuta was more prevalent among rats with fleas than among those without, although this association was season-, and independently sex- and age-dependent. There were no quantitative interactions and reasons for this are discussed in relation to the foraging and breeding behaviour of the brown rat in Qatar

    The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    Get PDF
    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses

    Micro-habitat distribution drives patch quality for sub-tropical rocky plateau amphibians in the northern Western Ghats, India.

    Get PDF
    The importance of patch quality for amphibians is frequently overlooked in distribution models. Here we demonstrate that it is highly important for the persistence of endemic and endangered amphibians found in the threatened and fragile ecosystems that are the rocky plateaus in Western Maharashtra, India. These plateaus are ferricretes of laterite and characterise the northern section of the Western Ghats/Sri Lanka Biodiversity Hotspot, the eighth most important global hotspot and one of the three most threatened by population growth. We present statistically supported habitat associations for endangered and data-deficient Indian amphibians, demonstrating significant relationships between individual species and their microhabitats. Data were collected during early monsoon across two seasons. Twenty-one amphibian taxa were identified from 14 lateritic plateaus between 67 and 1179m above sea level. Twelve of the study taxa had significant associations with microhabitats using a stepwise analysis of the AICc subroutine (distLM, Primer-e, v7). Generalist taxa were associated with increased numbers of microhabitat types. Non-significant associations are reported for the remaining 9 taxa. Microhabitat distribution was spatially structured and driven by climate and human activity. Woody plants were associated with 44% of high-elevation taxa. Of the 8 low-elevation taxa 63% related to water bodies and 60% of those were associated with pools. Rock size and abundance were important for 33% of high elevation specialists. Three of the 4 caecilians were associated with rocks in addition to soil and stream presence. We conclude the plateaus are individualistic patches whose habitat quality is defined by their microhabitats within climatic zones

    Helium mixtures in nanotube bundles

    Full text link
    An analogue to Raoult's law is determined for the case of a 3He-4He mixture adsorbed in the interstitial channels of a bundle of carbon nanotubes. Unlike the case of He mixtures in other environments, the ratio of the partial pressures of the coexisting vapor is found to be a simple function of the ratio of concentrations within the nanotube bundle.Comment: 3 pages, no figures, submitted to Phys. Rev. Let

    Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    Get PDF
    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapourliquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys
    corecore