1,318 research outputs found
The α2 HS glycoprotein receptor on lymphocytes transformed by Epstein—Barr virus
AbstractThe α2HS glycoprotein receptor form lymphocytes transformed by Epstein—Barr Virus was isolated by affinity chromatography. The protein receptor has a monomer Mr of 48 000, which is similar to the Epstein—Barr virus-determined nuclear antigen (EBNA), and pI = 7.2. Like EBNA the 48 000 Mr component in unfractionated labelled detergent solubilised cell supernatants also binds DNA. These results may suggest some similarity between the α2HS receptor and EBNA
Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with and without an inverse-square potential
The unitary operator which transforms a harmonic oscillator system of
time-dependent frequency into that of a simple harmonic oscillator of different
time-scale is found, with and without an inverse-square potential. It is shown
that for both cases, this operator can be used in finding complete sets of wave
functions of a generalized harmonic oscillator system from the well-known sets
of the simple harmonic oscillator. Exact invariants of the time-dependent
systems can also be obtained from the constant Hamiltonians of unit mass and
frequency by making use of this unitary transformation. The geometric phases
for the wave functions of a generalized harmonic oscillator with an
inverse-square potential are given.Comment: Phys. Rev. A (Brief Report), in pres
Probing Pulsar Winds Using Inverse Compton Scattering
We investigate the effects of inverse Compton scattering by electrons and
positrons in the unshocked winds of rotationally-powered binary pulsars. This
process can scatter low energy target photons to produce gamma rays with
energies from MeV to TeV. The binary radio pulsars PSR B1259-63 and PSR
J0045-73 are both in close eccentric orbits around bright main sequence stars
which provide a huge density of low energy target photons. The inverse Compton
scattering process transfers momentum from the pulsar wind to the scattered
photons, and therefore provides a drag which tends to decelerate the pulsar
wind. We present detailed calculations of the dynamics of a pulsar wind which
is undergoing inverse Compton scattering, showing that the deceleration of the
wind of PSR B1259-63 due to `inverse Compton drag' is small, but that this
process may confine the wind of PSR J0045-73 before it attains pressure balance
with the outflow of its companion star. We calculate the spectra and light
curves of the resulting inverse Compton emission from PSR B1259-63 and show
that if the size of the pulsar wind nebula is comparable to the binary
separation, then the gamma-ray emission from the unshocked wind may be
detectable by atmospheric Cerenkov detectors or by the new generation of
satellite-borne gamma-ray detectors such as INTEGRAL and GLAST. This mechanism
may therefore provide a direct probe of the freely-expanding regions of pulsar
winds, previously thought to be invisible.Comment: To be published in Astroparticle Physics. 27 pages, 5 figure
Dynamical Dark Energy simulations: high accuracy Power Spectra at high redshift
Accurate predictions on non--linear power spectra, at various redshift z,
will be a basic tool to interpret cosmological data from next generation mass
probes, so obtaining key information on Dark Energy nature. This calls for high
precision simulations, covering the whole functional space of w(z) state
equations and taking also into account the admitted ranges of other
cosmological parameters; surely a difficult task. A procedure was however
suggested, able to match the spectra at z=0, up to k~3, hMpc^{-1}, in
cosmologies with an (almost) arbitrary w(z), by making recourse to the results
of N-body simulations with w = const. In this paper we extend such procedure to
high redshift and test our approach through a series of N-body gravitational
simulations of various models, including a model closely fitting WMAP5 and
complementary data. Our approach detects w= const. models, whose spectra meet
the requirement within 1% at z=0 and perform even better at higher redshift,
where they are close to a permil precision. Available Halofit expressions,
extended to (constant) w \neq -1 are unfortunately unsuitable to fit the
spectra of the physical models considered here. Their extension to cover the
desired range should be however feasible, and this will enable us to match
spectra from any DE state equation.Comment: method definitely improved in semplicity and efficacy,accepted for
publication on JCA
Inverse Compton Emission of TeV Gamma Rays from PSR B1259-63
We derive light curves for the hard gamma-ray emission, at energies up to
several TeV, expected from the unique pulsar/Be-star binary system PSR
B1259-63. This is the only known system in our galaxy in which a radio pulsar
is orbiting a main sequence star. We show that inverse Compton emission from
the electrons and positrons in the shocked pulsar wind, scattering target
photons from the Be star, produces a flux of hard gamma-rays that should be
above the sensitivity threshold of present day atmospheric Cerenkov detectors.
Furthermore, we predict that the flux of hard gamma-rays produced via this
mechanism has a characteristic variation with orbital phase that should be
observable, and which is not expected from any other mechanism.Comment: To be published in Astroparticle Physics. 24 pages, 8 figure
Novel approach to the study of quantum effects in the early universe
We develop a theoretical frame for the study of classical and quantum
gravitational waves based on the properties of a nonlinear ordinary
differential equation for a function of the conformal time
, called the auxiliary field equation. At the classical level,
can be expressed by means of two independent solutions of the
''master equation'' to which the perturbed Einstein equations for the
gravitational waves can be reduced. At the quantum level, all the significant
physical quantities can be formulated using Bogolubov transformations and the
operator quadratic Hamiltonian corresponding to the classical version of a
damped parametrically excited oscillator where the varying mass is replaced by
the square cosmological scale factor . A quantum approach to the
generation of gravitational waves is proposed on the grounds of the previous
dependent Hamiltonian. An estimate in terms of and
of the destruction of quantum coherence due to the gravitational
evolution and an exact expression for the phase of a gravitational wave
corresponding to any value of are also obtained. We conclude by
discussing a few applications to quasi-de Sitter and standard de Sitter
scenarios.Comment: 20 pages, to appear on PRD. Already published background material has
been either settled up in a more compact form or eliminate
Neutron scattering and molecular correlations in a supercooled liquid
We show that the intermediate scattering function for neutron
scattering (ns) can be expanded naturely with respect to a set of molecular
correlation functions that give a complete description of the translational and
orientational two-point correlations in the liquid. The general properties of
this expansion are discussed with special focus on the -dependence and hints
for a (partial) determination of the molecular correlation functions from
neutron scattering results are given. The resulting representation of the
static structure factor is studied in detail for a model system using
data from a molecular dynamics simulation of a supercooled liquid of rigid
diatomic molecules. The comparison between the exact result for and
different approximations that result from a truncation of the series
representation demonstrates its good convergence for the given model system. On
the other hand it shows explicitly that the coupling between translational
(TDOF) and orientational degrees of freedom (ODOF) of each molecule and
rotational motion of different molecules can not be neglected in the
supercooled regime.Further we report the existence of a prepeak in the
ns-static structure factor of the examined fragile glassformer, demonstrating
that prepeaks can occur even in the most simple molecular liquids. Besides
examining the dependence of the prepeak on the scattering length and the
temperature we use the expansion of into molecular correlation
functions to point out intermediate range orientational order as its principle
origin.Comment: 13 pages, 7 figure
Genetic architecture of dispersal behaviour in the post-harvest pest and model organism Tribolium castaneum
Dispersal behaviour is an important aspect of the life-history of animals. However, the genetic architecture of dispersal-related traits is often obscure or unknown, even in well studied species. Tribolium castaneum is a globally significant post-harvest pest and established model organism, yet studies of its dispersal have shown ambiguous results and the genetic basis of this behaviour remains unresolved. We combine experimental evolution and agent-based modelling to investigate the number of loci underlying dispersal in T. castaneum, and whether the trait is sex-linked. Our findings demonstrate rapid evolution of dispersal behaviour under selection. We find no evidence of sex-biases in the dispersal behaviour of the offspring of crosses, supporting an autosomal genetic basis of the trait. Moreover, simulated data approximates experimental data under simulated scenarios where the dispersal trait is controlled by one or few loci, but not many loci. Levels of dispersal in experimentally inbred lines, compared with simulations, indicate that a single locus model is not well supported. Taken together, these lines of evidence support an oligogenic architecture underlying dispersal in Tribolium castaneum. These results have implications for applied pest management and for our understanding of the evolution of dispersal in the coleoptera, the world’s most species-rich order
The role of high-field magnetic resonance imaging in parkinsonian disorders:Pushing the boundaries forward
Historically, magnetic resonance imaging (MRI) has contributed little to the study of Parkinson's disease (PD), but modern MRI approaches have unveiled several complementary markers that are useful for research and clinical applications. Iron- and neuromelanin-sensitive MRI detect qualitative changes in the substantia nigra. Quantitative MRI markers can be derived from diffusion weighted and iron-sensitive imaging or volumetry. Functional brain alterations at rest or during task performance have been captured with functional and arterial spin labeling perfusion MRI. These markers are useful for the diagnosis of PD and atypical parkinsonism, to track disease progression from the premotor stages of these diseases and to better understand the neurobiological basis of clinical deficits. A current research goal using MRI is to generate time-dependent models of the evolution of PD biomarkers that can help understand neurodegeneration and provide reliable markers for therapeutic trials. This article reviews recent advances in MRI biomarker research at high-field (3T) and ultra high field-imaging (7T) in PD and atypical parkinsonism. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
- …