1,015 research outputs found

    Expanding Space: the Root of all Evil?

    Full text link
    While it remains the staple of virtually all cosmological teaching, the concept of expanding space in explaining the increasing separation of galaxies has recently come under fire as a dangerous idea whose application leads to the development of confusion and the establishment of misconceptions. In this paper, we develop a notion of expanding space that is completely valid as a framework for the description of the evolution of the universe and whose application allows an intuitive understanding of the influence of universal expansion. We also demonstrate how arguments against the concept in general have failed thus far, as they imbue expanding space with physical properties not consistent with the expectations of general relativity.Comment: 8 pages, accepted for publication in PAS

    Culture Display Rules of Smiling and Personal Well-being: Mutually Reinforcing or Compensatory Phenomena? Polish - Canadian Comparisons

    Get PDF
    Cultures vary in terms of emotional display rules, which include the expression of satisfaction and dissatisfaction. In Poland there is a norm of negativity, deriving from a culture of complaining (Wojciszke & BaryƂa, 2005), whereas in Canada, there is a tendency to express happiness (Safdar, Friedlmeier, Matsumoto, Yoo, Kwantes, Kakai, & Shigemasu, E., 2009). In the present research project, norms and values regarding smiling in public situations, norms regarding the affirmation of life and complaining, as well as individual measures of optimism (LOT-R) and well-being (SWLS) were measured among Poles and Canadians. The results showed that the cultural display rules endorsed by Canadian students affirmed smiling and positivity in social life more than those for Polish students. Contrary to expectations, optimism and the level of satisfaction with their own lives were significantly higher among Poles than Canadians. This may indicate a compensatory mechanism between normative displays and subjective experience. Other potential interpretations are also considered

    A small source in Q2237+0305 ?

    Get PDF
    Microlensing in Q2237+0305 between 1985 and 1995 (eg. Irwin et al. 1989; Corrigan et al. 1991; Ostensen et al. 1996) has been interpreted in two different ways; as microlensing by stellar mass objects of a continuum source having dimensions significantly smaller than the microlens Einstein radius (ER) (eg. Wambsganss, Paczynski & Schneider 1990; Rauch & Blandford 1991), and as microlensing by very low mass objects of a source as large as 5 ER (Refsdal & Stabell 1993; Haugan 1996). In this paper we present evidence in favour of a small source. Limits on the source size (in units of ER) are obtained from the combination of limits on the number of microlens Einstein radii crossed by the source during the monitoring period with two separate light-curve features. Firstly, recently published monitoring data (Wozniak et al. 2000; OGLE web page) show large variations (~0.8-1.5 magnitudes) between image brightnesses over a period of 700 days or ~15% of the monitoring period. Secondly, the 1988 peak in the image A light-curve had a duration that is a small fraction (<0.02) of the monitoring period. Such rapid microlensing rises and short microlensing peaks only occur for small sources. We find that the observed large-rapid variation limits the source size to be <0.2 ER (95% confidence). The width of the light-curve peak provides a stronger constraint of <0.02 ER (99% confidence). The Einstein radius (projected into the source plane) of the average microlens mass (m) in Q2237+0305 is ER ~ 10^{17}\sqrt{m} cm. The interpretation that stars are responsible for microlensing in Q2237+0305 therefore results in limits on the continuum source size that are consistent with current accretion disc theory.Comment: 8 pages, 3 figures, accepted for publication in M.N.R.A.

    Degeneracy in exotic gravitational lensing

    Get PDF
    We present three different theoretically foreseen, but unusual, astrophysical situations where the gravitational lens equation ends up being the same, thus producing a degeneracy problem. These situations are (a) the case of gravitational lensing by exotic stresses (matter violating the weak energy condition and thus having a negative mass, particular cases of wormholes solutions can be used as an example), (b) scalar field gravitational lensing (i.e. when considering the appearance of a scalar charge in the lensing scenario), and (c) gravitational lensing in closed universes (with antipodes).The reasons that lead to this degeneracy in the lens equations, the possibility of actually encountering it in the real universe, and eventually the ways to break it, are discussed.Comment: Accepted for publication in Modern Physics Letters

    Radio Emission and Particle Acceleration in SN 1993J

    Get PDF
    The radio light curves of SN 1993J are found to be well fit by a synchrotron spectrum, suppressed by external free-free absorption and synchrotron self-absorption. A standard r^-2 circumstellar medium is assumed, and found to be adequate. The magnetic field and number density of relativistic electrons behind the shock are determined. The strength of the magnetic field argues strongly for turbulent amplification behind the shock. The ratio of the magnetic and thermal energy density behind the shock is ~0.14. Synchrotron and Coulomb cooling dominate the losses of the electrons. The injected electron spectrum has a power law index -2.1, consistent with diffusive shock acceleration, and the number density scales with the thermal electron energy density. The total energy density of the relativistic electrons is, if extrapolated to gamma ~ 1, ~ 5x10^-4 of the thermal energy density. The free-free absorption required is consistent with previous calculations of the circumstellar temperature of SN 1993J, T_e ~ (2-10)x10^5 K. The relative importance of free-free absorption, Razin suppression, and the synchrotron self-absorption effect for other supernovae are briefly discussed. Guidelines for the modeling and interpretation of VLBI observations are given.Comment: accepted for Ap.

    Variations in Duschinsky rotations in m-fluorotoluene and m-chlorotoluene during excitation and ionization

    Get PDF
    We investigate Duschinsky rotation/mixing between three vibrations for both m-fluorotoluene (mFT) and m-chlorotoluene (mClT), during electronic excitation and ionization. In the case of mFT, we investigate both the S1 → S0 electronic transition and the D0+ ← S1 ionization, by two-dimensional laser-induced fluorescence (2D-LIF) and zero-electron-kinetic energy (ZEKE) spectroscopy, respectively; for mClT, only the D0+ ← S1 ionization was investigated, by ZEKE spectroscopy. The Duschinsky mixings are different in the two molecules, owing to shifts in vibrational wavenumber and variations in the form of the fundamental vibrations between the different electronic states. There is a very unusual behavior for two of the mFT vibrations, where apparently different conclusions for the identity of two S1 vibrations arise from the 2D-LIF and ZEKE spectra. We compare the experimental observations to the calculated Duschinsky matrices, finding that these successfully pick up the key geometric changes associated with each electronic transition and so are successful in qualitatively explaining the vibrational activity in the spectra. Experimental values for a number of vibrations across the S0, S1, and D0+ states are reported and found to compare well to those calculated. Assignments are made for the observed vibration-torsion (“vibtor”) bands, and the effect of vibrational motion on the torsional potential is briefly discussed

    Microlensing induced spectral variability in Q2237+0305

    Full text link
    We present both photometry and spectra of the individual images of the quadruple gravitational lens system Q2237+0305. Comparison of spectra obtained at two epochs, separated by ∌ 3 \sim~3\,years, shows evidence for significant changes in the emission line to continuum ratio of the strong ultraviolet CIV~λ\lambda1549, CIII]~λ\lambda1909 and MgII~λ\lambda2798 lines. The short, ∌ 1 \sim~1\,day, light--travel time differences between the sight lines to the four individual quasar images rule out any explanation based on intrinsic variability of the source. The spectroscopic differences thus represent direct detection of microlensing--induced spectroscopic differences in a quasar. The observations allow constraints to be placed on the relative spatial scales in the nucleus of the quasar, with the ultra--violet continuum arising in a region of \la~0.05~{\rm pc} in extent, while the broad emission line material is distributed on scales much greater than this.Comment: Accepted for Publication in MNRAS. Paper with 11 figure
    • 

    corecore