188 research outputs found
A balancing act: An exploration of how a public flagship institution responds to pressures for racial equity and institutional excellence
The purpose of this study was to explore how a public flagship institution responds to pressures for racial equity and institutional excellence in higher education. In particular, the study relied on an exploratory case study methodology to investigate the University of Maryland, College Park's responses to pressures for racial equity and institutional excellence from 1988, when the University was designated the flagship institution of the State of Maryland, to 2006. This study was informed by two streams of literature. The first stream examines how broad notions of equity and excellence are defined and measured and discusses whether these ideals are in tension within the broader context of American higher education. The second body of literature explores how institutions respond to external pressures, how contextual forces and human agents interact to shape institutional responses and how these responses affect the manner in which equity and excellence ideals are realized. The streams of literature are tied together through a conceptual model which suggests how demands for racial equity and institutional excellence are mediated by the strategic choices of key actors within the institution.
Data were collected through semi-structured interviews with nineteen informants and document analysis. Data suggest that specific strategies to mediate the demands for racial equity were conditioned and arguably constrained by the University's responses to pressures for institutional excellence. The data also suggest that the University's longstanding efforts to link racial equity with institutional excellence through broader notions of diversity which celebrate a broad range of individual differences are perceived to have diluted the social justice focus of racial equity. The University's resistance to addressing issues of racial equity in favor of promoting diversity and its tendency to embrace traditional, status-based indicators of excellence may have contributed to divergent perspectives concerning the University's commitment to racial equity and may have undermined the ability of the University to advance this value.
Taken together, these and other case findings indicate that the orienting framework was a valid and useful theoretical orientation
Kombucha Bacteria Growth Rate At Different Temperatures
Many commercially available kombucha products instruct to keep the bottle refrigerated. Kombucha contains probiotic bacteria. Bacteria are known to proliferate at different temperatures. Thus, we hypothesized that the warmer the temperature of kombucha storage the more bacteria growth there would be. Kombucha was stored at different temperatures and bacteria growth was recorded. Three bottles of kombucha were used in the experiment and each was put into their respective temperature zones. The first bottle, the control, was stored in a refrigerated area at 4°C, since kombucha is recommended to be stored in cold temperatures for safe consumption. The second bottle was placed at room temperature, approximately 21°C, a slightly warmer temperature. The last bottle was placed in an incubator at 37°C. After leaving the bottles in their respective temperatures for 24 hours, a series of serial dilutions was performed on the kombucha. The reason for dilutions was to be able to count the bacteria. The results for the refrigerated plate had an average (colony forming unites) CFU/mL of 9,153,333, the room temperature plate had 8,273,333 CFU/mL and the incubated plate had a CFU/mL average of 48,113,333. These numbers reflect that if kombucha is kept refrigerated or at room temperature then the bacteria amount will be at around the same, but if the kombucha is kept at a warm temperature then the bacteria amount will be greatly increased. With this in mind it is recommended that kombucha be stored refrigerated or room temperature to ensure the bacteria levels stay low
Minimal intervention dentistry for the child patient: The current landscape
In the wake of the COVID-19 pandemic the UK dental workforce is facing a national health crisis as we address the vast amount of untreated dental disease. This is ever more pressing for our child dental patients for whom early detection and intervention is key to maintaining quality of life. A pragmatic, cost-effective, dental team-based approach, grounded in the philosophy of Minimal Intervention Dentistry (MID) is needed to address the increasing burden of disease and the worsening of health inequalities. Although not exhaustive, this article offers a brief overview of evidence relating to minimally invasive techniques for the management of dental caries in paediatric dentistry
An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed
Citation: Zhu, L., Jones, C., Guo, Q., Lewis, L., Stark, C. R., & Alavi, S. (2016). An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed. Journal of Animal Science, 94(4), 1501-1507. doi:10.2527/jas2015-9822The quantification of total starch content (TS) or degree of starch gelatinization (DG) in animal feed is always challenging because of the potential interference from other ingredients. In this study, the differences in TS or DG measurement in pelleted swine feed due to variations in analytical methodology were quantified. Pelleted swine feed was used to create 6 different diets manufactured with various processing conditions in a 2 x 3 factorial design (2 conditioning temperatures, 77 or 88 degrees C, and 3 conditioning retention times, 15, 30, or 60 s). Samples at each processing stage (cold mash, hot mash, hot pelletized feed, and final cooled pelletized feed) were collected for each of the 6 treatments and analyzed for TS and DG. Two different methodologies were evaluated for TS determination (the AOAC International method 996.11 vs. the modified glucoamylase method) and DG determination (the modified glucoamylase method vs. differential scanning calorimetry [DSC]). For TS determination, the AOAC International method 996.11 measured lower TS values in cold pellets compared with the modified glucoamylase method. The AOAC International method resulted in lower TS in cold mash than cooled pelletized feed, whereas the modified glucoamylase method showed no significant differences in TS content before or after pelleting. For DG, the modified glucoamylase method demonstrated increased DG with each processing step. Furthermore, increasing the conditioning temperature and time resulted in a greater DG when evaluated by the modified glucoamylase method. However, results demonstrated that DSC is not suitable as a quantitative tool for determining DG in multicomponent animal feeds due to interferences from nonstarch transformations, such as protein denaturation
The effects of acute exercise on bone turnover markers in middle-aged and older adults: A systematic review
© 2020 Elsevier Inc. Background: Bone turnover is the cellular machinery responsible for bone integrity and strength and, in the clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce mechanical stress on bone which is needed for bone remodelling, but to date, there are conflicting results in regards to the effects of varying mechanical stimuli on BTMs. Objectives: This systematic review examines the effects of acute aerobic, resistance and impact exercises on BTMs in middle and older-aged adults and examines whether the responses are determined by the exercise mode, intensity, age and sex. Methods: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. Eligibility criteria included randomised controlled trials (RCTs) and single-arm studies that included middle-aged (50 to 65 years) and older adults (\u3e65 years) and, a single-bout, acute-exercise (aerobic, resistance, impact) intervention with measurement of BTMs. PROSPERO registration number CRD42020145359. Results: Thirteen studies were included; 8 in middle-aged (n = 275, 212 women/63 men, mean age = 57.9 ± 1.5 years) and 5 in older adults (n = 93, 50 women/43 men, mean age = 68.2 ± 2.2 years). Eleven studies included aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance exercise (RE, both middle-aged). AE significantly increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross-Linked Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased ALP in older adults. In middle-aged adults, RE with impact had no effect on tOC or BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N Propeptide and tOC in middle-aged women. Conclusion: Acute exercise is an effective tool to modify BTMs, however, the response appears to be exercise modality-, intensity-, age- and sex-specific. There is further need for higher quality and larger RCTs in this area
Land use change in the river basins of the Great Barrier Reef, 1860 to 2019: a foundation for understanding environmental history across the catchment to reef continuum
Land use in the catchments draining to the Great Barrier Reef lagoon has changed considerably since the introduction of livestock grazing, various crops, mining and urban development. Together these changes have resulted in increased pollutant loads and impaired coastal water quality. This study compiled records to produce annual time-series since 1860 of human population, livestock numbers and agricultural areas at the scale of surface drainage river basins, natural resource management regions and the whole Great Barrier Reef catchment area. Cattle and several crops have experienced progressive expansion interspersed by declines associated with droughts and diseases. Land uses which have experienced all time maxima since the year 2000 include cattle numbers and the areas of sugar cane, bananas and cotton. A Burdekin Basin case study shows that sediment loads initially increased with the introduction of livestock and mining, remained elevated with agricultural development, and declined slightly with the Burdekin Falls Dam construction
The Effects of Acute High-Intensity Interval Exercise and Hyperinsulinemic-Euglycemic Clamp on Osteoglycin Levels in Young and Middle-Aged Men
Osteoglycin (OGN) is a leucine-rich proteoglycan that has been implicated in the regulation of glucose in animal models. However, its relationship with glucose control in humans is unclear. We examined the effect of high-intensity interval exercise (HIIE) and hyperinsulinemic-euglycemic clamp on circulating levels of OGN as well as whether circulating OGN levels are associated with markers of glycemic control and cardio-metabolic health. Serum was analyzed for OGN (ELISA) levels from 9 middle-aged obese men (58.1 ± 2.2 years, body mass index [BMI] = 33.1 ± 1.4 kg∙m−2, mean ± SEM) and 9 young men (27.8 ± 1.6 years, BMI = 24.4 ± 0.08 kg∙m−2) who previously completed a study involving a euglycemic-hyperinsulinemic clamp at rest and after HIIE (4x4 minutes cycling at approximately 95% peak heart rate (HRpeak), interspersed with 2 minutes of active recovery). Blood pressure, body composition (dual-energy X-ray absorptiometry), and insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Serum OGN was higher in the young cohort compared with the middle-aged cohort (65.2 ± 10.1 ng/mL versus 36.5 ± 4. 5 ng/mL, p ≤ 0.05). Serum OGN was unaffected by acute HIIE but decreased after the insulin clamp compared with baseline (~−27%, p = 0.01), post-exercise (~−35%, p = 0.01), and pre-clamp (~−32%, p = 0.02) time points, irrespective of age. At baseline, lower circulating OGN levels were associated with increased age, BMI, and fat mass, whereas higher OGN levels were related to lower fasting glucose. Higher OGN levels were associated with a higher glucose infusion rate. Exercise had a limited effect on circulating OGN. The mechanisms by which OGN affects glucose regulation should be explored in the future. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research
The effects of acute high-intensity interval exercise and hyperinsulinemic-euglycemic clamp on osteoglycin levels in young and middle-aged men
Osteoglycin (OGN) is a leucine-rich proteoglycan that has been implicated in the regulation of glucose in animal models. However, its relationship with glucose control in humans is unclear. We examined the effect of high-intensity interval exercise (HIIE) and hyperinsulinemic-euglycemic clamp on circulating levels of OGN as well as whether circulating OGN levels are associated with markers of glycemic control and cardio-metabolic health. Serum was analyzed for OGN (ELISA) levels from 9 middle-aged obese men (58.1 ± 2.2 years, body mass index [BMI] = 33.1 ± 1.4 kg∙m − 2, mean ± SEM) and 9 young men (27.8 ± 1.6 years, BMI = 24.4 ± 0.08 kg∙m − 2) who previously completed a study involving a euglycemic-hyperinsulinemic clamp at rest and after HIIE (4 x 4 minutes cycling at approximately 95% peak heart rate (HRpeak), interspersed with 2 minutes of active recovery). Blood pressure, body composition (dual-energy X-ray absorptiometry), and insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Serum OGN was higher in the young cohort compared with the middle-aged cohort (65.2 ± 10.1 ng/mL versus 36.5 ± 4. 5 ng/mL, p ≤ 0.05). Serum OGN was unaffected by acute HIIE but decreased after the insulin clamp compared with baseline (~ − 27 %, p = 0.01), post-exercise (~ − 35 %, p = 0.01), and pre-clamp (~ − 32 %, p = 0.02) time points, irrespective of age. At baseline, lower circulating OGN levels were associated with increased age, BMI, and fat mass, whereas higher OGN levels were related to lower fasting glucose. Higher OGN levels were associated with a higher glucose infusion rate. Exercise had a limited effect on circulating OGN. The mechanisms by which OGN affects glucose regulation should be explored in the future
Association between circulating osteocalcin and cardiometabolic risk factors following a 4-week leafy green vitamin K-rich diet
© 2020 S. Karger AG, Basel. Copyright: All rights reserved. Background: Evidence suggests that lower serum undercarboxylated osteocalcin (ucOC) may be negatively associated with cardiometabolic health. We investigated whether individuals with a suppression of ucOC following an increase in dietary vitamin K1 exhibit a relative worsening of cardiometabolic risk factors. Materials and Methods: Men (n = 20) and women (n = 10) aged 62 ± 10 years participated in a randomized, controlled, crossover study. The primary analysis involved using data obtained from participants following a high vitamin K1 diet (HK; 4-week intervention of increased leafy green vegetable intake). High and low responders were defined based on the median percent reduction (30%) in ucOC following the HK diet. Blood pressure (resting and 24 h), arterial stiffness, plasma glucose, lipid concentrations, and serum OC forms were assessed. Results: Following the HK diet, ucOC and ucOC/tOC were suppressed more (p \u3c 0.01) in high responders (41 and 29%) versus low responders (12 and 10%). The reduction in ucOC and ucOC/tOC was not associated with changes in blood pressure, arterial stiffness, plasma glucose, or lipid concentrations in the high responders (p \u3e 0.05). Discussion/Conclusion: Suppression of ucOC via consumption of leafy green vegetables has no negative effects on cardiometabolic health, perhaps, in part, because of cross-talk mechanisms
- …