25,710 research outputs found

    The part-through surface crack in an elastic plate

    Get PDF
    Tensile stretching and bending of elastic plate containing surface crac

    Subharmonic gap structure in short ballistic graphene junctions

    Get PDF
    We present a theoretical analysis of the current-voltage characteristics of a ballistic superconductor-normal-superconductor (SNS) junction, in which a strip of graphene is coupled to two superconducting electrodes. We focus in the short-junction regime, where the length of the strip is much smaller than superconducting coherence length. We show that the differential conductance exhibits a very rich subharmonic gap structure which can be modulated by means of a gate voltage. On approaching the Dirac point the conductance normalized by the normal-state conductance is identical to that of a short diffusive SNS junction.Comment: revtex4, 4 pages, 4 figure

    A computational scheme to evaluate Hamaker constants of molecules with practical size and anisotropy

    Get PDF
    We propose a computational scheme to evaluate Hamaker constants, AA, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the non-additivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC valuations, based on possible validations on predicted AA. We applied the scheme to cyclohexasilane molecule, Si6_6H12_{12}, used in 'printed electronics' fabrications, getting A105±2A \sim 105 \pm 2 [zJ], being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy {\it ab initio} evaluations to predict wettabilities as in the form of materials informatics over broader molecules.Comment: The manuscript was revised according to review comment

    Hysteresis Switching Loops in Ag-manganite memristive interfaces

    Get PDF
    Multilevel resistance states in silver-manganite interfaces are studied both experimentally and through a realistic model that includes as a main ingredient the oxygen vacancies diffusion under applied electric fields. The switching threshold and amplitude studied through Hysteresis Switching Loops are found to depend critically on the initial state. The associated vacancy profiles further unveil the prominent role of the effective electric field acting at the interfaces. While experimental results validate main assumptions of the model, the simulations allow to disentangle the microscopic mechanisms behind the resistive switching in metal-transition metal oxide interfaces.Comment: 14 pages, 3 figures, to be published in Jour. of Appl. Phy

    Structure and spatial distribution of Ge nanocrystals subjected to fast neutron irradiation

    Get PDF
    The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC) embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS), High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The irradiation of NC-Ge samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 800 deg. C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of NC-Ge changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region

    Volatility clustering and scaling for financial time series due to attractor bubbling

    Full text link
    A microscopic model of financial markets is considered, consisting of many interacting agents (spins) with global coupling and discrete-time thermal bath dynamics, similar to random Ising systems. The interactions between agents change randomly in time. In the thermodynamic limit the obtained time series of price returns show chaotic bursts resulting from the emergence of attractor bubbling or on-off intermittency, resembling the empirical financial time series with volatility clustering. For a proper choice of the model parameters the probability distributions of returns exhibit power-law tails with scaling exponents close to the empirical ones.Comment: For related publications see http://www.helbing.or

    Dynamics of quartz tuning fork force sensors used in scanning probe microscopy

    Full text link
    We have performed an experimental characterization of the dynamics of oscillating quartz tuning forks which are being increasingly used in scanning probe microscopy as force sensors. We show that tuning forks can be described as a system of coupled oscillators. Nevertheless, this description requires the knowledge of the elastic coupling constant between the prongs of the tuning fork, which has not yet been measured. Therefore tuning forks have been usually described within the single oscillator or the weakly coupled oscillators approximation that neglects the coupling between the prongs. We propose three different procedures to measure the elastic coupling constant: an opto-mechanical method, a variation of the Cleveland method and a thermal noise based method. We find that the coupling between the quartz tuning fork prongs has a strong influence on the dynamics and the measured motion is in remarkable agreement with a simple model of coupled harmonic oscillators. The precise determination of the elastic coupling between the prongs of a tuning fork allows to obtain a quantitative relation between the resonance frequency shift and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table

    Microscopic origin of the conducting channels in metallic atomic-size contacts

    Full text link
    We present a theoretical approach which allows to determine the number and orbital character of the conducting channels in metallic atomic contacts. We show how the conducting channels arise from the atomic orbitals having a significant contribution to the bands around the Fermi level. Our theory predicts that the number of conducting channels with non negligible transmission is 3 for Al and 5 for Nb one-atom contacts, in agreement with recent experiments. These results are shown to be robust with respect to disorder. The experimental values of the channels transmissions lie within the calculated distributions.Comment: 11 pages, 4 ps-figures. Submitted to Phys. Rev. Let

    Agents Play Mix-game

    Full text link
    In mix-game which is an extension of minority game, there are two groups of agents; group1 plays the majority game, but the group2 plays the minority game. This paper studies the change of the average winnings of agents and volatilities vs. the change of mixture of agents in mix-game model. It finds that the correlations between the average winnings of agents and the mean of local volatilities are different with different combinations of agent memory length when the proportion of agents in group 1 increases. This study result suggests that memory length of agents in group1 be smaller than that of agent in group2 when mix-game model is used to simulate the financial markets.Comment: 8 pages, 6 figures, 3 table
    corecore