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An elastic analysis is presented for the tensi %a. strp ^Mhing and bending of

a plate containing a surface crack penetrating part through the thickness (fig. 1).

The treatment is approximate, in that the two-dimensional generalized plane stress

and Kirchhoff-Poisson plate bending theories are employed, with the part-through

cracked section represented as a continuous line spring. The spring has both

stretching and bending resistance, its compliance coefficients being chosen to

match those of an edge cracked strip in plane strain. The mathematical formula-

tion reduces finally to two coupled integral equations ur the thickness averaged

force and moment per unit length along the cracked section. These are solved

numerically for the case of a semi-elliptical part -through crack, with results

compared to a simple but approximate closed -form solution. Extensive results

are given for the stress intensity factor at the midpoint of the part-through

crack for both remote tensile and bending loads on the plate. These results

indicate significant load shedding to uncracked regions of the plate, in that

the stress intensity factor is substantially lower ( in general) than for a

similarly loaded strip in plane strain with a crack of the same depth.



Introduction

Fig. 1 shows the configuration studied here. An elastic plate of thickness

h, and of infinite planar extent, contains a surface crack penetrating part

through the thickness. At remote distances from the crack site, the plate is

subjected to loads equipollent to a uniform simple tension in the x 2 direction

and to pure bending about the x  direction. This configuration, and its variants

for curved shells rather than plates, is of considerable interest in the fracture

resistant design of pipelines, reactor vessels, pressurized fuel tanks, and other

plate and shell structures.

An exact analysis for the elastic stress intensity factor along the crack

front is precluded by the decidedly three dimensional nature of the problem.

Thus an approximate analysis is developed here, which appears more nearly exact

when the surface length of the crack (distance 2a in fig. 1) is large compared to

the plate thickness. The approximation relies heavily on the known solution for

an edge cracked strip in plane strain as in fig. 2, subjected to an axial force N

and moment M per unit length in the direction of plane strain constraint. In

particular we shall employ the exact expressions for the stress intensity factor

and for the increase in compliance due to introduction of the crack, from the sol-

ution for the edge cracked strip in plane strain, as a basis for approximate anal y

-sis of the part through surface crack. Note that the plane strain configuration

of fig. 2 corresponds to the configuration of fig. 1 in the special case for which

the surface length 2a of the crack is infinite and the crack depth R(x 1 ) is

1I

constant.
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The following procedure is adopted:

Let r il (xl .x2 ,x3 ) be the stress state in the three dimensional body of

fig. 1. Define

+h/2
N22 (x1 ,0) =	 T22(xl,0,x3)dx3 ,	 and

-h/2

(1)

h/2
M22 (x1 ,0) =	 x3T22(x1,0,x3)dx3

-h/2

as the net force and moment, per unit length in the x1 direction, which act on

the plane x2 = 0 containing the crack. For the approximation, we shall assume

that the stress intensity factor at a point along the crack front with coordinate

p	
x1 is identical to the stress intensity factor for an edge cracked strip in plane

strain (fig. 2) subjected to an axial force and moment equal, respectively, to

N22 (x1 ,0) and M22(x1 ,0), and having a crack depth equal to R(x 1 ). This method

of approximating the stress intensity factor appears most appropriate along the

central section of the crack shown in fig. 1, but much less appropriate near the

ends where the crack intersects the free surface. Fortunately, the stress inten-

sity factor along the central section, where breaking through to the far plate sur-

face is imminent, is of considerable practical interest. Later, we shall discuss

a more elegant method for approximating the stress intensity factor, based on its

relation to the variation of potential energy with crack position, and show (via

the Appendix) that the latter method leads to the same approximation as outlined

above.

Thus, to determine the stress intensity factor at points along the crack tip,

we must commute the force and moment transmitted across the cracked section.
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We obtain these through the simple approximate theories of generalized plane

stress and Kirchhoff-Poisson plate bending, employed in conjunction with a

representation of the part through surface crack as a continuously distri-

buted line spring with compliance coefficients chosen to match the compliance

of an edge cracked strip in plane strain.

Specifically, the problem of fig. 1 is formulated as the two-dimensional

problem of simultaneous plane stress and plate bending for an infinite sheet in

the x1 , x2 plane, subjected to remotely uniform stretching and bending loads,

and containing a line discontinuity on the x1 axis from -a to +a , as

shown in fig. 3. The line discontinuity represents a spring having both

stretching and bending resistance. Let

a(x1 ) = u2 (x190) - u2(xl ,o)
	

(2)

be the opening displacement along the line of discontinuity (+ and - signs

referring as in fig. 3 to top and bottom limits along the discontinuity),

and let

8(x1) -	 ax 	 ax 
au-N190)	 au3(x1,0)	

(3)

be the angle of rotation of one side of the discontinuity relative to the

other. (Here we use the two dimensional notation of plate theory,

u1(xl ,x2 ) and u2(x1 , x2 ) being thickness averaged in-plane displacements,

and u3(x1 , x2 ) being the transverse displacement.) Both a and a are

taken to be linear functions of the net force N22(xl , 0) and moment

H22(x1, 0) transmitted across the line c;f discontinuity. We choose these
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functional relations by returning to the two dimensional plane strain problem

of fia. 2. For a given net force and moment on the strip, the presence of

the crack will cause the displacement and rotation of one end relative to the

other to increase over the values which would result in an uncracked strip.

Thee increases are identified as d and e , and the exact functional rela-

tion to the net force and moment for the edge cracked strip is adopted for the

line of discontinuity in fig. 3. Thus, we are lumping the increased compli-

ance due to the crack into the continuously distributed spring. The spring

constants will, of course, depend on x  since the crack depth 1(x 1) is

variable. This relation of d and a to the force and moment provides the

boundary condition along the discontinuity, and solution of the problem leads

to expressions for the force and moment from which the stress intensity fac-

tor is calculated.

The details of calculation, outlined in the following sections, lead

finally to two coupled integral equations for the net force and moment trans-

mitted across the line of discontinuity. By virtue of a convenient approxi-

mation for the variation of spring constants with x l , a solution of the in-

tearal equations is obtained which involves constant net force and moment.

This solution compares rather favorably with exact solutions of the integral

equations obtained by digital computation. Resulting values for the stress

intensity factor in the central section of the crack are presented graphi-

calls for a range of parameters.

For notation, it turns out to be more convenient to use the thickness

average stresses cgs and nominal bending stresses mas , defined by
I
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.w

o= Na8 =
CIO	 ^i

6
Nasa

^mas 2

1 h/2
-h/2 Tasdx3

h/2

62	
x3Tasdx3

h fh/2

a,s = 1,2
	

(4)

.

Thus, for example, fig. 2 shows the remote loads on the edge cracked strip in

terms of o and m , and the remotely applied loads on the configurations of

figs. ( 1) and ( 3) are denoted by v. and m. .

Note that two approximations are involved in the procedure outlined

above: The stress intensity factor is calculated from N 22 ( xl , 0) and

M22(xl , 0), according to the exact expression for the edge cracked strip in

plane strain. The force and moment are calculated from two dimensional plane

stress-plate bending theory, with the cracked section represented as a con-

tinuous line spring having compliance matched to that of the edge cracked

strip in plane strain. One could e,ually well adopt only the second ap proxi-

mation, and compute from it the total potential energy of the system (i.e.,

strain energy of stretching and bending stress fields in the plate, plus

energy of the line spring, plus potential energy of the load system) as a

functional of crack depth. Then Irwin 's C11 relation between the variation

in potential energy, accompanying a variation in crack depth, and the stress

intensity factor could be employed as a basis for calculating the stress

intensity factor. It is shown in the Appendix that this method leads to

the same expression for the stress intensity factor as does the first appro-

ximation indicated above. (The Appendix relies on notation introduced in the

next two sections).
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Edge Cracked Strip in Tension and Bending

For the plane strain probler of fir. 2, it is well known [1,2] that the

near crack tip stress state in an isotropic linear elastic material has the

singular form

t ij ♦ Kr 1/2 fij (W) , as r -* 0 ,
	

(5)

where K is Irwin's stress intensity factor and f ij (W) is a set of functions

of the orientation angle, which are identical for all symmetrically loaded crack

configurations. The functions are normalized so that T22 ♦ K(2wr)-1/2 as

r ♦ 0 on the ray W = 0 .

By dimensional considerations, it is clear that for the tension and

bending loading of fig. 2,

K = h1/2 Colt t + m%]

where qt and gb are dimensionless functions of the crack depth to thickness

ratio 1/h . From Koiter's [3] solution for an edge crack in a half plane, it

is clear that

g  2 gb s 1.12 (wt/h)1/2 	 for R < < h .	 (7)

More generally, one may use the well-known boundary collocation solution by

Gross and Srawley [41 to write

gt _ &1/2 [1.99 - 0.410 t 18.7042 - 38.48& 3 t 53.85041

(8)
	 r	 .

gb = &1/2 [1.99 - 2.47& t 12.9702 - 23.179 3 t 24.80&43

where & z 1/h _ crack depth to thickness ratio

4M
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These equations were originally presented as being for the range 0 < E < 0.7 .

In the sequel, numerical results for the stress intensity factor at the center

point of the configuration of fig. 1 will be presented in the form of a ratio

of K to the stress intensity factor for an infinitely long crack (a ♦ •),

of depth equal to that at the center point, and subjected to the same remote

loading for ratios of maximum part -through crack depth to plate thickness to/h

in the range 0.1 % L 
0 
A % 0.7 .

Now, as in the last section, let d and A be the additional displace-

want and rotation of on* end of the strip relative to V-c other, due to intro-

duction of the crack. Since U is the generalized displacement associated

with o , and h 29/6 the generalized displacement associated with m , we

may write

2
g

hd = Atta + Atbm	 '	 h6 s Abto	 + Abbm	 ,	 (9)

where Atb a Abt by elastic reciprocity. The compliance coefficients A,,

depend only on 1 and vanish when 1 = 0 	 It is straightforward to

generalize Irwin ' s C1] relation between the potential energy release rate,

2	 2
G = fir= K2	h 1--^-= (gto2 + 2gtgtiom + gbm2 )	 ,	 (10)

_..

and the rate of change of compliance with crack length to cases for which
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there is more than one generalized force. For example, if only v acted in

fig. 2, and m was zero, we would have hd = Atta and, following Iry gin,

G = F v aW (hd) _	 v2 
dA t
	 when m = 0	 (11)

The proper generalization for combined tension and bending is

2
Gs 2 Cv at (hd ) + m at h6 

J

(12)

dA	 d
= 1 v	 tt v+ dA tb m l + m	 t Cr + 

Abb mC	 ,

Now, if we equate common coefficients in the quadratic forms of eqs. (10) and

(12), recalling that the compliance coefficients are symmetric, we can solve

for dAAV/dft	 After integrating, the equations for d and 9 may be put in

the forms

2
d = 2(1 - v )h (a

tty + atbm)

9 a 12(1
E	 01bt
- v2) ( 	 v + 

*bb m) ,

	 (13)

where the a's are dimensionless compliance coefficients, depending on the

crack depth to thickness ratio X/h , and defined by

1 R
aau - h	

gAgudl	 ,	 a,u = b,t	 (14)fo
If we insert the series from eas. (8), each compliance coefficient may be

represented in the form
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8
n1u = E2	 E C (n) En	 ;	 A,u = b,t	 ;	 E = 1/h ,	 (15)

n=0

where the coefficients C,v ) are listed in Table 1. Fig. 4a shows a plot of

the stress intensity coefficients (g t ,gb ) introduced in eqs. (6,8), and

fig. 4b shows the dimensionless compliance coefficients (att' atb' %b)• all

as functions of the crack depth to thickness ritio 1/h .

As noted earlier, we will employ eqs. (13) relating (d,®) to (o,m) as

a boundary condition along the line of discontinuity in fig. 3, which represents

the part through crack of fig. 1.

Okamura et al. [5] have presented a similar calculation of the compliance

increase due to a crack, in their treatment of the notched column under com-

pression. They consider the notched column as equivalent to two unnotched

columns joined together by a torsional spring, with the spring constant chosen

to simulate the compliance increase due to the notch. This is, of course,

similar to the use of the compliance calculation in the present analysis. How-

ever, they considered a compliance analogous to acbb only, and have neglected

the rotation induced by the axial load (i.e. the effect of abt in eis. 13).

Thus their results can apply only in cases for which the nominal bending stress

overwhelms the average compressive stress.

Tension and Bending Stress Fields

It is well known that solutions to two dimensional problems in the approxi-

mate theories of generalized plane stress and Kirchhoff-Poisson plate bending

may be represented in terms of analytic functions of z = x  t ix  [6 9 7] :

a
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-.r

plane stress:

ul t iu2 = 1--+^-^ 3 + v et(z) - z 4
t (Z)- t(Z)

°11 + 022

c

	

22 	 + i o12 = '14t (Z) + *t(Z)

pate banding:

au	 au
+ i ^ _ ®b(z) ♦ z ®b- z ♦ *b(z)

	

1	 2

m11 + m 2 = -
	 Eh

(Z) + 4 (z)2 - v	 b	 b

(16)

(17)

m22 2 
m 
1 + i m12 = 2(l v	 zmb(z) + *b(z)

Vl - i V2 = _	 Eh 	 4 „ (z)
3(^2 b

Here mt (z), 0t ( z) and mb (z), *b (z) are analytic functions of z , and

the bar over a quantity denotes the complex conjugate. Also, the transverse

shears V  are defined as the integral of T 3 across the thickness.

In our problem (fig. 3), the tension and bending fields are coupled

by the boundary conditions along the line of discontinuity, which relate d

and 6 to the values of a22 and m22 transmitted across the discontinuity.

We shall impose these conditions shortly, after separately constructing ten-

sion and bendinP solutions in terms of the as yet unknown stresses
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a(x1) a a22 (xl , 0)	 ,	 m(xl) a m22 ( xl , 0)	 (18)

acting on the discontinuity.

For the tension problem, the vanishing of a 12 along the x1 axis

(by sym0etry) and loading conditions at » require

Ot ( z) a T— - z#t( z)
	

(19)

Following Muskelishvili [6], we may then show that conditions along the line

of discontinuity are

[^t(xl )J+ + [ ®t ( xi )]- a a(xl) - ^=	 - a < xi < + a

(20)

l	 The solution, resulting in the proper stress state at 	 and in single valued

displacements, is

m^(z) a - a= + -- z ( z2 - a2)-1/2t	 4	 2

1	 2 - 2 -1/2	
a a(t) 3 a` - t2 dt+

(
z 	 a )
	 (21)

-a	 t - z

(Here the inverse square root function has its branch cut on the discontinuity,

and behaves as z-1 for large z ).

Similarly, for the bending problem, vanishing of the Kirchhoff shear

h2 8012

y2 + 6 8x

along the xl axis (by symmetry) and loading conditions at » require
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(z) - - 1E-- h	 - 0 (z) - 1 4 v 0b (Z)(22)

Along the line of discontinuity,

_	 2

Cmb (xl )]+ + 10b (x1)] = - 231 _+ v )Eh Cm(x1) + 211 +vv a]
(23)

The solution, consistent with conditions at w and single valued plate de-

flection, is

-	 ( 3 +
2(1

v)Eh ^ '
( z)b =	

(1 - v)mm	 +
41+v

mi z(z2
 - a2)-1/2

2-v2)

	+ 1 (z2 - a2 )-1/2 +a m(t) 
3 a` - t2 dt	

(24)2n	
f-a	

t - z

To impose boundary conditions in the form of eqs. (13) along the dis-
k

continuity, we must first solve for 8 and 6 as defined by eqs. (2,3).
k

If t and ^b are both chosen to vanish at z = -a , then one may show from

eqs. (16,17) and those above that

	

d(xl ) = E Im[4+t (x1 )]	 8(xl) = - 1 8 v IMD++ (xl)] .	 (25)

To obtain ^t and m  from eqs. (21,24), one needs a result of the form

z	 dz	 i	 a2 - zt - i(z2 _ X2 )1/2 a - t2log

	

f-a (z2 - a2 ) 
1/2

( t - z)	
/?-- ­J2 	 (t - z)

(26)
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Let us introduce the dimensionless variables

X - xl/a	 ,	 T = t/a	 ,	 (27)

and write d(X) for 6(x1 ) ,	 m(T) for m(t) , etc. Then, employing

eqs. (25) with Eq. (26), the opening d and rotation 9 along the line of

discontinuity are

E d (X)
4 a	 - Q. 	 G(X,T)o(T)dT

-1

(28)

0 + v)Eh9(X)	
3 	 1

8(l +  v a	 -	
1- X -	 G(X,T)m(T)dT

-1

Here, the weight function is

1	 1-TX+ 3 1-X` 3 1 -T`
GMT) =	 logiT

-XI 	,
	 ( 29)

and apart from multiplicative factors, this is the opening displacement

(rotation) at X due to a * point in-plane forct! (moment) at T 	 Note that

G is symmetric in X and T .

Integral Equations Along Discontinuity; Variational Principle

We insist that the separation and relative rotation along the discontinuity

be related to the tension and bending there by eqs. (13). When inserted into the

equations above, the resulting integral equations for o and m , to be =;olved

in the range I X I < 1 , are
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1 - v? a [a(X MOM + atb(X)m(X)]
2	 tt

+1	 j
+	 G(X,T)o(T)dT = aft 3 1 - X2

-1
(30)

3(3 + v)(1 - v) h
2	 a [%

t (X)a(X) + abb(X)m(X)]

/+1
t
 J

G(X,T)m(T)dT = % 3 1 - X`
-1

Note that the compliance coefficients a, u as defined by eqs. (14,15) are

functions of the crack depth to thickness ratio L/h. Since I is some

prescribed function of xl , we adopt the notation a,u(X) , although it should be

remembered that these functions will also have a quantity such as 1(0)/h as a

parameter. Once a and m are determined from the integral equations, the

stress intensity factor at points along the crack tip is given by eq. (6).

It may be readily shown that the integral equations are equivalent to the

following variational principle: The functional n[c(X), m(X)] is minimized

by the functions a(X) and m(X) constituting a solution of the problem, or

A.2[a(X), m(X)1 = 0 to first order for arbitrary variations Aa(X) and

Am(X) from the correct solution, where
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1
[Cl

tt (X)o
2 (X) + 2atb (X)o(X)m(X) + abb(X)m2(X)]dX

-1

f+l f+l
t	 2 2	 2	 G(X,T)o(X)o(T)dXdT

(1 - v )h	 -1 -1

1

	

- o^	 3 1 - X` c(X)dX
-1

tl

+ 3(3 +2va - v	 7 r-1

	
G(X,T )m(X)m(T)dXdT

f-1

tl

	

Mm	 3 1 - X` m(X)dX
-1

(31)

Indeed, n may be shown to be the complementary energy of the plate and con-

tinuously distributed spring, apart from a multiplicative constant and a diver-

gent additive term which does not depend on o or m . Thus, the variational

principle is just the complementary energy principle, but employed in such a

way that we have used full solutions of the plane stress and plate bending

equations to reckon the energy stored at material points away from the discon-

tinuity in terms of the values of o and m along the discontinuity. Of

course, the first integral represents the energy of the continuously distri-

buted spring.

2r

i
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Solution for a Special Case and Simple Approximation

It may be sham that

tl	
—xY
	

(32)
-1

Thus, if each of the dimensionless compliance coefficients varied in the form

01 M = M0 3 1 - X`,	 where a^u 	constant,	 (33)
XU	 XU

then the solution of the integral equations is clearly that o and m are

constants given by

F	 _
r

3

2

1-=— h [a0 a+a0 ml+a = a^2	 a tt	 tb

(34)

3(3 +Ml- v) ha[0Qt o m]+m = m°^bt	 'bb	 •

The solution is

OQ = 1+ 3(3+v)(1-v) h o o - 1-v2 h o m2	 a 'bb	 2	 a a tb •

Om = _
 3(3+ v)(1 - 0 h o a +	 1 + 1 - v2 h ao m

2	 a abt 40a tt •

(35)
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where

0 s	 1+1-v2 h ao	 1+ 3(3+v)(1-v) h ao
- 2	 a tt 1	 2	 a bb

3(3 + v)(1 - 0(1 ;- v 
2
	 h 

2 
ao 2	 (36)a	 tb

In general, no shape of a crack exists which is consistent with the assumed

functional form of eq. (33) for the compliance coefficients. [An exception is

the case of a very shallow crack, 1/h < < 1 , having depth 1 proportional

to (1 - X2 )1/4 ]. However, the approximation so much reduces the complexity

of the problem that it is well worth examination. Two methods for the choice

of 
a7iU 

suggest themselves. The simplest is to identify 
aXU 

with the value

of alU (X) at X : 0 ,

aAV = aAU (0)	 (37)

A slightly more complicated method is to choose 
aaU 

so that both sides of

eq. (33) agree in an integrated average along the length of the discontinuity,

and this gives

-ft

1

aAV 	
= I	 -1AV(X)dXf-1 (38)

In fact, this latter method of choosing aaU is suggested by quite dif-

ferent considerations: Let us maks no assumptions about the variation of

a7. with X . Rather, consider the variational formulation of the problem,

as in the last section, and let .s minimize n on the class of functions

c = constant and m = constant along the discontinuity. It may be seen that



-18-

a and m then satisfy eqs. (34), so that the solution is as in eqs. (35),

provided that the symbols ad s are defined just as in sq. (38). We shall

compare this simple approximation with numerical solutions of the integral

equations, as discussed below.

Numerical Solution of the Integral Equations

A numerical formulation is developed here for the case in which the part-

through crack is semi -elliptical in shape,

1(x1) ? x1 ^	 ? 1/?

1	 t (a) 	 or 1(x1 ) * 10(1-X )	 (39)
0

The compliance coefficients are therefore, from eqs. (15)9

1 2	 8	 1 n	 n/2
alu (X)	 ( 0	 (1-X2 )	 I C^^ ) ( 0 ) (1-X2 )	 (40)

ns0

From symmetry, a(X) and m(X) need only be determined in the interval

0 s X s 1 . This is done as follows: Referring to fig. 5 0 we divide the

interval into a number of subdivisions ( fourteen in the figure), and represent

a(X) and m(X) as piecewise linear functions. The unknowns are then the

values of a and m at the nodes (i.e., at XsO, 1/8 9 1/4,...,30/32, 31/3291).

We choose these values so that the integral eqs. (30) are satisfied exactly at

each node. Thus, if there are n subdivisions so that the nodes are at

X020 , X1 , X2 , ... , Xn= 1 , with a0 9 000 9  % and m. , ... , % being the cor-

responding values of a and m , then the discretised form of the first of

the integral eqs. (30) is

«..
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..

2

= —a 	 + atb( Xk )mk ] +
n	

Xi

I	 CG(Xk,X )
Jul

JXJ-1

+ G(Xk , -X)] [01-1 + (aJ-oj -1)(X-Xi-1) / (XfXj-l )]dX

= oM 3 1-Xk 	 for k=0, 1 9 2, ... , n .
	

(41)

and a similar fora applies for the second integral equation. The integrations

were done by standard numerical routines, except for those intervals where

G(Xk ,X) is singular. In these intervals the singular part of the kernel,

log IXk-Xj , was separated out and integrated in closed form, whereas the

remainder of the kernel was integrated numerically. A special interpretation

must be made of eq. (41)

This is because alu(1)

the equation. We are le

results by dividing both

for k=n (i.e., at the end of the interval, Xk=1).

and G(1,X) are zero, as is also the right side of

Ft with 0=0	 The proper fora of eqs. (30) at X=1
1/2

sides by (1-X 
2 )
	 and letting X♦1 . Thus, Since

lim a1U(X)	 lim G(X,T)	 = 1 1+T 1/2	 (42)
X-01( X2 ,1 2 = 0 + and X-011 (1-X

--^^	 (fT	 +

we have

1 +1 (1+T )1/2 o(T) dT = o•	 (43)
W -1	 -T	 m(T)	 mI
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Thus, the discretized equation which replaces eq. (41) when k =n is

n	
X
j

E	 (1-X2) 1/2 
Ccj -1 ♦ (^j-oj-1) (X-Xj-1) / (

Xj-Xj-1)IdX
Jul

Xj-1
(44)

The condition expressed by eq. (43) has a simple interpretation: Looking

back to eqs. ( 21,24) for the complex potentials, ®t(z) and 4b(z) , we see

that eq. (43) is the condition for those potentials to remain bounded at the

ends of the line of discontinuity. Hence the thickness average stresses a00

and moments mas will be bounded at the ends of the line of discontinuity. In

fact, this same conclusion may be shown to follow if the depth of the part through

crack approaches zero at the ends as

L(xl) -► (1-X2 )q times term of order unity at X = tl ,

where q is any positive number exceeding 1/4 .

Results

Results presented in figs. 6 to 10, from numerical solution of the integral

equations, are based on the 14 spacings (and thus 30 unknown nodal values)

shown i;, fig. 5. The finer subdivisions were employed near the ends since

preliminary solutions revealed large gradients in c and m there. Doubling

the number of subdivisions makes for less than 1% difference in re , sLAts for

c0 and m0 ( from which we compute the stress intensity factor at the crack

midpoint x1 = 0), although values of 
a  and m  change by as much as 7
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to 14%. Calculations were performed on the IBM 360/67 at Brown University.

Two solutions were run for each geometric configuration studied, one for the case

cf a pure tensile load (o. = 1 , m. s 0) and one for a pure bending load

(040 = 0 , ma s 1) .

According to sq. (6), the stress intensity factor at the crack midpoint is

given in terms of a0 and m0 by

K = hl/2 [a0 gt + m0 gb ]	 ,

g,L and gb being evaluated for the midpoint depth ratio, to/h . In presenting

numerical results we make K dimensionless through division by K,, , the stress

intensity factor of the edge crack in plane strain for the sane L0  ratio and
remote tensile or bending load. This is, of course, the limiting value of K

for the part-through crack as the surface length becomes infinite. r

Fig. 6 shows K/K« for a pure tensile load, as a function of the dimension-

less crack depth (Ro/h) and surface length (2a/h); fig. 7 presents the same

for a pure bending load. One notable feature of the results is that a very large

surface length is necessary (for moderate to deep crack depths) for the part-

through crack stress intensity factor to approach that of the plane strain edge

crack in a strip. Evidently, the part-through crack causes substantial load

shedding to uncracked regions of the plate, as a consequence of the localized

increase in elastic compliance at the cracked section.

Fig. 8 shows the comparison between K as obtained from the numerical solu-

tion of the integral equations (solid lines) and from the simple approximation for 	 I

OW
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a and m of eqs. (35 9 38) (dashed lines). This figure is for the pure tensile

Load case. Similar but slightly smaller discrepancies result between the two

in the pure bending case. Thus, while the errors of the approximation are not

small, its use may be recommended both for its simplicity and for its giving a

conservative overestimate to the intensity factor.

Fig. 9 shows the variation of a and m with distance from the crack

midpoint for the case of a pure tensile load. These results are for l o/h s 1/2 ,

and for several values of 2a/h . Fig. 10 shows the same for a pure bending load.

It is interesting to note that the pure bending load induces little nominal ten-

silo stress on the cracked section, while the pure tensile load induces a signi-

ficant nominal bending stress. Values of a and m at X = 1 indicate (in a
j.

thickness averaged sense) the severity of the stress concentration at the ends

of the part-through cracked section.

Our use of the two-dimensional plane stress and plate bending theories is

based on the assumption that the surface length of the crack exceeds, say, two or

more plate thicknesses. Smith et a1. [8] have treated the part-through crack pro-

blem making use of approximate solutions of the three-dimensional elastic field
a

equations, and gave results for cracks with 2a/h t 1 	 Their analysis modelled

the semi-elliptical surface crack as a crack in the form of an arc of a circle, and

was phrased in terms of correction factors, first suggested by Irwin [9], on the

embedded elliptical, crack solution [10] to account for: 1) the presence of the

free surface through the crack plane, and 2) the finite thickness of the plate.

:agile 2 compares numerical results for K at the crack midpoint, as taken from

0%zml th et al., with results from our calculations although, strictly speaking, all

the 2a/h range shown is outside the range of validity of our model. Nevertheless,

1-W
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the close agreement with the presumably more accurate calculations is striking.

(Smith et al. discuss three methods of matching the arc of a circle to a semi-

ellipse. Results in the table are based on matching curvature and depth at the

crack midpoint, and fall between the other two methods of matching surface length

or crack area in addition to midpoint depth.)

It is apparent that our model may readily be extended to part-through cracks

in curved shell structures, resulting in analyses within the framework of two-

dimensional shell theory. This is a great simplification, to be exploited in

future work. Further, a similar model will allow treatment of part-through

cracks in ductile plates or shells for which a segment of the part-cracked sec-

tion is completely yielded. The simplest treatment would employ an elastic-

perfectly plastic line spring, with results of plane strain plastic limit

analyses for the strip of fig. 2 employed to obtain values of a and m cor-

responding to yield.
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Appendix: Use of relation between K and variation of potential energy with

crack depth, and its equivalence to the method adopted earlier.

The potential energy of a finite (later, replace finite by infinite)

plate, of the sort in fig. 3 with a continuously distributed spring

representing a partially through the thickness crack, is

h j	
aua 

h	
a 2 u 3

	

P - 2	 [a as ax s + gma6 ax- S3 dx1dx2
area of
plate

+a

	

+ 2	 [ab + 6 meldxl
-a

au
-	

ENa a + Ma ax
boundary	

a
(Al)(Al)

where a j range over 1, 2, where Na and Ma are the boundary force

and moment per unit length of middle surface, and s is arc length around

the boundary. Clearly, the first integral gives the strain energy of the

stretching and bending fields, the second integral gives the strain energy of

the line spring, and the last integral gives the potential energy of the

boundary load system. Let oas , u 3 , d , m , etc. represent the solution

when the crack depth is R(xl ), and let a 0 + AO a$ , u 3 + Au 39 d + Lb ,

m + Am , etc. represent the solution when the crack depth is INN ) + WX1 ) ,

the boundary loads being the same in both cases. The associated change in

potential energy is, to first order in the A quantities.
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h	
a%	 aA a	 h	 a2 u3OP = 2 J	 [ ( Acas ax + °as - x ) + 6 c emas 

a
area of	

s	 s	 a s

plate

a2Au3
+ 
mas ax	 )]dxldx2

+a

+ 2	 U Acd + cAO + h (Am8 + mAA)]dxl

-a

aeu
-	 [NaAua + Ma x 'Ids

boundary	
a

(A-2)

We know that the potential energy change may be related to Irwin's

energy release rate, G , b,,

-AP = J
	

GAnds	 (A-3)

crack
tip

where s is arc length along the crack tip, An is the advance of the

crack normal to itself, and where the formula it correct to first order in
An . But to first order, Ands = Atdx l , and

+a

-AP =	 GA  dxl .
	

(A-4)

-a

Hence, if we compute AP from eq. (A-2) for arbitrary W xl ), we will have

an estimate of G (or K) at points along the crack tip. In fact, we shall

see that this method gives a result for K which is identical to that of

the method employed in the paper, in which we related X to the force and



A-3

moment along the discontinuity through the plane strain result of ei. (6).

We shall employ the principle of virtual work, adapted to the plate

with a line of discontinuity, to write

aeu
(Naeua + Ma ax3)ds

boundary	 a

h	 aeua + h	 a2eu3

[°aR ax s 6 ma6 axaaxsI dxldx2
area of
plate

+a

+ h

	

	 [aAS + 6 mee ]dxl 	(A- 5)

-a

This modifies eq. (A-2) to

	h 	
aua	 aeua h	 a2u3	 a2eu3

	

P - 2	 [(eaas ax	 aas ax 
	

6 
(Am 

ax ax ax	 as ax ax ^dxldx2
area of	

S	 S	 a R	 a 6

plate

+a

	

+ 2	 [(Aa6 - ved) + 6 (eme - mee)dx l 	(A-6)
-a

The area integral vanishes by elastic reciprocity, and we are left with

+a

-AP = 2
	

u as - evd ) + 6 (mee - eme )dxl	(A-7)

-a

At this point it will cause no difficulty if the plate is considered to be

infinite.

:k_ _,
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By relating d and e to a and m by eq. (9), we may write

h(QA6 - AW = aa(Atta + Atbm) - Ao(Atta + Atbm)

- a( 
dR	 dt

dAtt o+ 1A1 11At+o(A 
tt 

Ac+A 
tb 

Am) - Av(A 
tt 

a	
tb

+A m)

(A-8)

and a similar formula for

h2
6 (MAO - Ame)

so that eq. (A-7) for AP becomes

+a	
dA	 dA	 dA^	 d

-AP=	 {20( It a + tb m) +m (--=t o+ b m) 7} Atdx	 (A-9)

	

d	 dl	 dl	 dR	 1
-a

Upon comparing this to eq. ( A-4), we can see that G must be set equal to

the quantity in { ... }, in equation (A-9), if we are to estimate G from

the variation in potential energy. But looking back to eq.(11) and (12), we

see that the derivatives of the compliance coefficients have been defined such

that the quantity in ( ... ) is simply the value for G which results when the

stress intensity factor is written as in eq. (6) for the plane strain problem.

:'hus, we see that the method adopted in the paper, for relating K to the

force and moment acting on the line of discontinuity, is entirely equivalent

to a method based on the relation between K and the potential energy variation

with respect to crack depth.

-Ab
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-M

	

(n)	 (n)	 (n)

	

C(n)	 C(n)
	 Cbb

0	 1.98 1.98 1.98

1	 -0.54 -1.91 -3.28

2	 18.65 16.01 14.43

3	 -33.70 -34.84 -31.26

4	 99.26 83.93 63.56

5	 -211.90 -153.65 -103.36

6	 436.84 256.72 147.52

7	 -460.48 -244.67 -127.69

8	 289.98 133.55 61.50

TABLE 1: Coefficients in the power series of eqs. (15)

for the dimensionless compliances 
att' atb' °ebb'

n

t
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Wh1/2 00)	
Wh1/2 a.)

100	 2a/h	 present paper	 Smith st al. [03

0.1 0.25 0.41 0.42

0.2 0.4 0.48 0.51

0.2 0.5 0.52 0.60

0.3 0.6 0.57 0.63

0.3 0.75 0.63 0.73

0.4 0.8 0.68 0.70

0.4 1.0 0.76 0.84

0.5 1.0 0.82 0.82

0.5 1.25 0.90 0.94

0.6 1.2 0.96 0.91

0.6 1.5 1.06 1.15

TABLE 2: Stress-intensity factors at aid-point of semi-elliptic

crack under pure tensile loading: comparison with ref. 183.

-to
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Figure Captions

1. A surface crack penetrating part-through the thickness of a plate loaded

in tension and bending.

2. Plane strain of an edge cracked strip subjected to thickness average ten-

sile stress o(= N/h) and nominal bending stress m(= 6M/h2).

3. Two-dimensional plane stress-plate bending model with line spring representing

part-through crack of fig. 1. Compliance coefficients at points along the

line spring are matched to those of the edge cracked strip in plane strain,

fig. 2.

4. a) Stress intensity factor coefficients g  (for tensile load) and

gb (for bending load) , for edge cracked strip of fig. 2, as a function of

crack depth to thickness ratio f/h (see eq. 6).

b) Dimensionless compliance coefficients a XU (see eq. 13) for additional

extension d and rotation A of strip due to introduction of crack. These

are employed as compliance coefficients for the line spring of fig. 3.

5. For numerical solution of the integral equations, the nominal tensile and

bending stresses on the part-through cracked section are represented as piece-

wise linear functions determined by the unknown values of o and m at

the "nodes".

6. Stress intensity factor at midpoint of the part-through crack, for pure ten-

sile load j. on plate of fig. 1 (i.e., mw = 0). The crack is assumed to

be semi-elliptical in shape, with depth t o at its midpoint and surface length

2a . The stress intensity factor is made dimensionless through division by

its value for a -► • (corresponding to edge crack of depth 
Z  

in a strip

under plane strain).

_...
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7.	 Same as fig. 6, but for pure bend load mw on plate of fig. 1

(i.e., am = 0).

	8.	 Comparison of stress intensity factor at midpoint of crack, for pure tensile

load, as computed from numerical solution of integral equations (solid lines,

from fig. 6) and from simple approximation based on eqs. (35,38) (dashed lines).

Similar but slightly smaller discrepancies result for pure bending load.

	

9.	 Nominal st..vsses acting on part-through cracked section, as a function of

distance from midpoint, for pure tensile load on plate of fig. 1. Calcula-

tions for midpoint crack depth of half the plate thickness, and for various

values of 2a/h. Solid lines represent results of the numerical calculations,

whereas the dashed lines are from the simple approximation of eqs. (35,38).

(a) Nominal tensile stress a/m om . (b) Nominal bending stress m/a. .

	

10.	 Same as fig. 9, but for pure bending load (a) Nominal tensile stress a/m om .

(b) Nominal bending stress m/m. .
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