795 research outputs found
Multifractality of wavefunctions at the quantum Hall transition revisited
We investigate numerically the statistics of wavefunction amplitudes
at the integer quantum Hall transition. It is demonstrated that
in the limit of a large system size the distribution function of is
log-normal, so that the multifractal spectrum is exactly parabolic.
Our findings lend strong support to a recent conjecture for a critical theory
of the quantum Hall transition.Comment: 4 pages Late
Rigorous results on spontaneous symmetry breaking in a one-dimensional driven particle system
We study spontaneous symmetry breaking in a one-dimensional driven
two-species stochastic cellular automaton with parallel sublattice update and
open boundaries. The dynamics are symmetric with respect to interchange of
particles. Starting from an empty initial lattice, the system enters a symmetry
broken state after some time T_1 through an amplification loop of initial
fluctuations. It remains in the symmetry broken state for a time T_2 through a
traffic jam effect. Applying a simple martingale argument, we obtain rigorous
asymptotic estimates for the expected times ~ L ln(L) and ln() ~ L,
where L is the system size. The actual value of T_1 depends strongly on the
initial fluctuation in the amplification loop. Numerical simulations suggest
that T_2 is exponentially distributed with a mean that grows exponentially in
system size. For the phase transition line we argue and confirm by simulations
that the flipping time between sign changes of the difference of particle
numbers approaches an algebraic distribution as the system size tends to
infinity.Comment: 23 pages, 7 figure
Zero-range process with open boundaries
We calculate the exact stationary distribution of the one-dimensional
zero-range process with open boundaries for arbitrary bulk and boundary hopping
rates. When such a distribution exists, the steady state has no correlations
between sites and is uniquely characterized by a space-dependent fugacity which
is a function of the boundary rates and the hopping asymmetry. For strong
boundary drive the system has no stationary distribution. In systems which on a
ring geometry allow for a condensation transition, a condensate develops at one
or both boundary sites. On all other sites the particle distribution approaches
a product measure with the finite critical density \rho_c. In systems which do
not support condensation on a ring, strong boundary drive leads to a condensate
at the boundary. However, in this case the local particle density in the
interior exhibits a complex algebraic growth in time. We calculate the bulk and
boundary growth exponents as a function of the system parameters
Ordering dynamics of the driven lattice gas model
The evolution of a two-dimensional driven lattice-gas model is studied on an
L_x X L_y lattice. Scaling arguments and extensive numerical simulations are
used to show that starting from random initial configuration the model evolves
via two stages: (a) an early stage in which alternating stripes of particles
and vacancies are formed along the direction y of the driving field, and (b) a
stripe coarsening stage, in which the number of stripes is reduced and their
average width increases. The number of stripes formed at the end of the first
stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus,
depending on this parameter, the resulting state could be either single or
multi striped. In the second, stripe coarsening stage, the coarsening time is
found to be proportional to L_y, becoming infinitely long in the thermodynamic
limit. This implies that the multi striped state is thermodynamically stable.
The results put previous studies of the model in a more general framework
Strong Phase Separation in a Model of Sedimenting Lattices
We study the steady state resulting from instabilities in crystals driven
through a dissipative medium, for instance, a colloidal crystal which is
steadily sedimenting through a viscous fluid. The problem involves two coupled
fields, the density and the tilt; the latter describes the orientation of the
mass tensor with respect to the driving field. We map the problem to a 1-d
lattice model with two coupled species of spins evolving through conserved
dynamics. In the steady state of this model each of the two species shows
macroscopic phase separation. This phase separation is robust and survives at
all temperatures or noise levels--- hence the term Strong Phase Separation.
This sort of phase separation can be understood in terms of barriers to
remixing which grow with system size and result in a logarithmically slow
approach to the steady state. In a particular symmetric limit, it is shown that
the condition of detailed balance holds with a Hamiltonian which has
infinite-ranged interactions, even though the initial model has only local
dynamics. The long-ranged character of the interactions is responsible for
phase separation, and for the fact that it persists at all temperatures.
Possible experimental tests of the phenomenon are discussed.Comment: To appear in Phys Rev E (1 January 2000), 16 pages, RevTex, uses
epsf, three ps figure
Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar
The 2-- to 1--dimensional crossover of the localisation length of electrons
confined to a disordered quantum wire of finite width is studied in a
model of electrons moving in the potential of uncorrelated impurities. An
analytical formula for the localisation length is derived, describing the
dimensional crossover as function of width , conductance and
perpendicular magnetic field . On the basis of these results, the scaling
analysis of the quantum Hall effect in high Landau levels, and the
delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure
An Analogy between Bin Packing Problem and Permutation Problem: A New Encoding Scheme
Part 2: Knowledge Discovery and SharingInternational audienceThe bin packing problem aims to pack a set of items in a minimum number of bins, with respect to the size of the items and capacity of the bins. This is an NP-hard problem. Several approach methods have been developed to solve this problem. In this paper, we propose a new encoding scheme which is used in a hybrid resolution: a metaheuristic is matched with a list algorithm (Next Fit, First Fit, Best Fit) to solve the bin packing problem. Any metaheuristic can be used but in this paper, our proposition is implemented on a single solution based metaheuristic (stochastic descent, simulated annealing, kangaroo algorithm). This hybrid method is tested on literature instances to ensure its good results
Weak Localization and Integer Quantum Hall Effect in a Periodic Potential
We consider magnetotransport in a disordered two-dimensional electron gas in
the presence of a periodic modulation in one direction. Existing quasiclassical
and quantum approaches to this problem account for Weiss oscillations in the
resistivity tensor at moderate magnetic fields, as well as a strong
modulation-induced modification of the Shubnikov-de Haas oscillations at higher
magnetic fields. They do not account, however, for the operation at even higher
magnetic fields of the integer quantum Hall effect, for which quantum
interference processes are responsible. We then introduce a field-theory
approach, based on a nonlinear sigma model, which encompasses naturally both
the quasiclassical and quantum-mechanical approaches, as well as providing a
consistent means of extending them to include quantum interference corrections.
A perturbative renormalization-group analysis of the field theory shows how
weak localization corrections to the conductivity tensor may be described by a
modification of the usual one-parameter scaling, such as to accommodate the
anisotropy of the bare conductivity tensor. We also show how the two-parameter
scaling, conjectured as a model for the quantum Hall effect in unmodulated
systems, may be generalized similarly for the modulated system. Within this
model we illustrate the operation of the quantum Hall effect in modulated
systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed
introduction; two figures taken out; reference adde
Weak localization of disordered quasiparticles in the mixed superconducting state
Starting from a random matrix model, we construct the low-energy effective
field theory for the noninteracting gas of quasiparticles of a disordered
superconductor in the mixed state. The theory is a nonlinear sigma model, with
the order parameter field being a supermatrix whose form is determined solely
on symmetry grounds. The weak localization correction to the field-axis thermal
conductivity is computed for a dilute array of s-wave vortices near the lower
critical field H_c1. We propose that weak localization effects, cut off at low
temperatures by the Zeeman splitting, are responsible for the field dependence
of the thermal conductivity seen in recent high-T_c experiments by Aubin et al.Comment: RevTex, 8 pages, 1 eps figure, typos correcte
The McKean-Vlasov Equation in Finite Volume
We study the McKean--Vlasov equation on the finite tori of length scale
in --dimensions. We derive the necessary and sufficient conditions for the
existence of a phase transition, which are based on the criteria first
uncovered in \cite{GP} and \cite{KM}. Therein and in subsequent works, one
finds indications pointing to critical transitions at a particular model
dependent value, of the interaction parameter. We show that
the uniform density (which may be interpreted as the liquid phase) is
dynamically stable for and prove, abstractly, that a
{\it critical} transition must occur at . However for
this system we show that under generic conditions -- large, and
isotropic interactions -- the phase transition is in fact discontinuous and
occurs at some \theta\t < \theta^{\sharp}. Finally, for H--stable, bounded
interactions with discontinuous transitions we show that, with suitable
scaling, the \theta\t(L) tend to a definitive non--trivial limit as
- …
