453 research outputs found

    Contribution of Piezo2 to endothelium-dependent pain.

    Get PDF
    BackgroundWe evaluated the role of a mechanically-gated ion channel, Piezo2, in mechanical stimulation-induced enhancement of hyperalgesia produced by the pronociceptive vasoactive mediator endothelin-1, an innocuous mechanical stimulus-induced enhancement of hyperalgesia that is vascular endothelial cell dependent. We also evaluated its role in a preclinical model of a vascular endothelial cell dependent painful peripheral neuropathy.ResultsThe local administration of oligodeoxynucleotides antisense to Piezo2 mRNA, at the site of nociceptive testing in the rat's hind paw, but not intrathecally at the central terminal of the nociceptor, prevented innocuous stimulus-induced enhancement of hyperalgesia produced by endothelin-1 (100 ng). The mechanical hyperalgesia induced by oxaliplatin (2 mg/kg. i.v.), which was inhibited by impairing endothelial cell function, was similarly attenuated by local injection of the Piezo2 antisense. Polymerase chain reaction analysis demonstrated for the first time the presence of Piezo2 mRNA in endothelial cells.ConclusionsThese results support the hypothesis that Piezo2 is a mechano-transducer in the endothelial cell where it contributes to stimulus-dependent hyperalgesia, and a model of chemotherapy-induced painful peripheral neuropathy

    Ionic basis of a mechanotransduction current in adult rat dorsal root ganglion neurons

    Get PDF
    Sensory mechanical transduction – necessary for hearing, proprioception, and the senses of touch and pain – remains poorly understood. In somatosensation, even the basic properties of the mechanically sensitive excitatory ionic currents that are assumed to mediate mechanical transduction are largely undescribed. We have recorded, from the soma of rat dorsal root ganglion (DRG) neurons in vitro, whole-cell ionic currents induced by the impact of a piezo-electrically driven glass probe. This transient mechanically activated current was observed in virtually all DRG neurons tested. In ion substitution experiments the current could be carried nonselectively by most cations, including divalent and organic cations, but not by chloride or sulfate ions. In addition, the mechanically activated current carried by monovalent cations was consistently blocked by millimolar concentrations of external calcium or magnesium. Based on these results, the transient mechanical transduction current observed in somatosensory neurons in vitro is mediated by large-pore mechanically gated channels nonselective for cations but impermeable to anions

    Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice

    Get PDF
    Inflammatory mediators can directly sensitize primary afferent nociceptors to mechanical and osmotic stimuli. Sensitized nociceptors have a lowered threshold of activation and increased spontaneous activity, which result in symptoms of hyperalgesia and pain, respectively. The transient receptor potential vanilloid 4 (TRPV4) ligand-gated ion channel has been implicated in the hyperalgesia for mechanical and osmotic stimuli associated with inflammatory states. To investigate whether TRPV4 directly contributes to the mechanisms of inflammatory mediator sensitization of C-fiber nociceptors, we compared the effect of the injection of simplified inflammatory soup (prostaglandin E2 and serotonin) into the mechanical receptive fields of C-fibers in TRPV4+/+ and TRPV4-/- mice in vivo. Following the injection of the soup, the percentage of C-fibers responding to a hypotonic stimulus and the magnitude of the response was significantly greater in TRPV4+/+ mice compared to TRPV4-/- mice. Moreover, in response to simplified inflammatory soup only C-fibers from TRPV4+/+ mice exhibited increased spontaneous activity and decreased mechanical threshold. These marked impairments in the response of C-fibers in TRPV4-/- mice demonstrate the importance of TRPV4 in nociceptor sensitization; we suggest that TRPV4, as TRPV1, underlies the nociceptive effects of multiple inflammatory mediators on primary afferent

    Quantitative automated microscopy (QuAM) elucidates growth factor specific signalling in pain sensitization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dorsal root ganglia (DRG)-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM) for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base.</p> <p>The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF.</p> <p>Results</p> <p>We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+)- and IB4(-)-neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked PGE<sub>2</sub>-induced sensitization.</p> <p>Conclusions</p> <p>QuAM is a suitable if not necessary tool to analyze activation of endogenous signalling in heterogeneous cultures. NGF, GDNF and EGF stimulation of DRG-neurons shows differential Erk1/2 activation responses and a corresponding differential behavioral phenotype. Thus, in addition to expression-markers also signalling-activity can be taken for functional subgroup differentiation and as predictor of behavioral outcome. The anti-nociceptive function of EGF is an intriguing result in the context of tissue damage but also for understanding pain resulting from EGF-receptor block during cancer therapy.</p

    Expression of a novel versican variant in dorsal root ganglia from spared nerve injury rats

    Get PDF
    The size and modular structure of versican and its gene suggest the existence of multiple splice variants. We have identified, cloned, and sequenced a previously unknown exon located within the noncoding gene sequence downstream of exon 8. This exon, which we have named exon 8β, specifies two stop-codons. mRNAs of the versican gene with exon 8β are predicted to be constitutively degraded by nonsense-mediated RNA decay. Here, we tested the hypothesis that these transcripts become expressed in a model of neuropathic pain
    corecore