1,401 research outputs found

    Sequential phosphorylation of adjacent serine residues on the N-terminal region of cardiac troponin-I: structure-activity implications of ordered phosphorylation

    Get PDF
    AbstractWe have used NMR spectroscopy to monitor the phosphorylation of a peptide corresponding to the N-terminal region of human cardiac troponin-I (residues 17–30), encompassing the two adjacent serine residues of the dual phosphorylation site. An ordered incorporation of phosphate catalysed by PKA was observed, with phosphorylation of Ser-24 preceding that of Ser-23. Diphosphorylation induced a conformational transition in this region, involving the specific association of the Arg-22 and Ser-24P side-chains, and maximally stabilised when both phosphoserines were in the di-anionic form. The results suggest that the second phosphorylation at Ser-23 of cardiac troponin-I is of particular significance in the mechanism by which adrenaline regulates the calcium sensitivity of the myofibrillar actomyosin Mg-ATPase

    Characterisation of the effects of mutation of the caldesmon sequence 691glu-trp-leu-thr-lys-thr696 to pro-gly-his-tyr-asn-asn on caldesmon-calmodulin interaction

    Get PDF
    AbstractWe have investigated the functional properties of a mutant (Cg1) derived from the C-terminal 99 amino acids of chicken caldesmon, 658–756 (658C) where the sequence 691glu-trp-leu-thr-lys-thr696 is changed to pro-gly-his-tyr-asn-asn. Cg1 bound Ca2+-calmodulin with (1/7)th of the affinity as compared to 658C or whole caldesmon. NMR titrations indicate that the contacts of Ca2+-calmodulin with the Trp-722 region of the peptide are retained but that those at the mutated site are lost. Most importantly Ca2+-calmodulin is not able to reverse the Cg1-induced inhibition. We conclude that the interaction of calmodulin with this caldesmon sequence is crucial for the reversal of caldesmon inhibition of actin-tropomyosin activation of myosin ATPase. The results are interpreted in terms of multi-site attachment of actin and Ca2+-calmodulin to overlapping sequences in caldesmon domain 4b

    Population dynamics of rhesus macaques and associated foamy virus in Bangladesh.

    Get PDF
    Foamy viruses are complex retroviruses that have been shown to be transmitted from nonhuman primates to humans. In Bangladesh, infection with simian foamy virus (SFV) is ubiquitous among rhesus macaques, which come into contact with humans in diverse locations and contexts throughout the country. We analyzed microsatellite DNA from 126 macaques at six sites in Bangladesh in order to characterize geographic patterns of macaque population structure. We also included in this study 38 macaques owned by nomadic people who train them to perform for audiences. PCR was used to analyze a portion of the proviral gag gene from all SFV-positive macaques, and multiple clones were sequenced. Phylogenetic analysis was used to infer long-term patterns of viral transmission. Analyses of SFV gag gene sequences indicated that macaque populations from different areas harbor genetically distinct strains of SFV, suggesting that geographic features such as forest cover play a role in determining the dispersal of macaques and SFV. We also found evidence suggesting that humans traveling the region with performing macaques likely play a role in the translocation of macaques and SFV. Our studies found that individual animals can harbor more than one strain of SFV and that presence of more than one SFV strain is more common among older animals. Some macaques are infected with SFV that appears to be recombinant. These findings paint a more detailed picture of how geographic and sociocultural factors influence the spectrum of simian-borne retroviruses

    Parasympathetic Response Profiles Related to Social Functioning in Young Children with Autistic Disorder

    Get PDF
    Psychophysiology studies of heart rate and heart rate variability can be employed to study regulatory processes in children with autism. The objective of this study was to test for differences in respiratory sinus arrhythmia (RSA; a measure of heart rate variability) and to examine the relationship between physiologic responses and measures of social behavior. Participants included 2-to 6-year-old children with Autistic Disorder and children without autism. Heart rate and RSA were derived from ECG recordings made during a baseline period and then a stranger approach paradigm. Social and adaptive behavior was assessed by parent report. Groups did not differ in mean heart rate or RSA at baseline or in response to social challenge. However, children with autism were more likely to show a physiologic response to intrusive portions of the stranger approach than to less intrusive portions of this procedure. Nonautistic children were equally likely to respond to intrusive and less intrusive social events. Within the autistic group, physiologic response to the intrusive stranger approach corresponded to higher ratings of social adaptive behaviors. These results suggest that physiologic responses to social challenge may help understand differences in social behavioral outcomes in children with autism

    New Rotation Periods in the Open Cluster NGC 1039 (M 34), and a Derivation of its Gyrochronology Age

    Full text link
    Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the cluster's age in a distance independent way, i.e., the so-called gyrochronology method. We present an analysis of 55 new rotation periods,using light curves derived from differential photometry, for solar type stars in M 34. We also exploit the results of a recently-completed, standardized, homogeneous BVIc CCD survey of the cluster in order to establish photometric cluster membership and assign B-V colours to each photometric variable. We describe a methodology for establishing the gyrochronology age for an ensemble of solar-type stars. Empirical relations between rotation period, photometric colour and stellar age (gyrochronology) are used to determine the age of M 34. Based on its position in a colour-period diagram, each M 34 member is designated as being either a solid-body rotator (interface or I-star), a differentially rotating star (convective or C-star) or an object which is in some transitory state in between the two (gap or g-star). Fitting the period and photometric colour of each I-sequence star in the cluster, we derive the cluster's mean gyrochronology age. 47/55 of the photometric variables lie along the loci of the cluster main sequence in V/B-V and V/V-I space. We are further able to confirm kinematic membership of the cluster for half of the periodic variables [21/55], employing results from an on-going radial velocity survey of the cluster. For each cluster member identified as an I-sequence object in the colour-period diagram, we derive its individual gyrochronology age, where the mean gyro age of M 34 is found to be 193 +/- 9 Myr, formally consistent (within the errors) with that derived using several distance-dependent, photometric isochrone methods (250 +/- 67 Myr).Comment: accepted for publication in Astronomy & Astrophysic

    Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition

    Get PDF
    We re-examine the prototypical roaming reaction—hydrogen atom roaming in formaldehyde decomposition—from a phase space perspective. Specifically, we address the question “why do trajectories roam, rather than dissociate through the radical channel?” We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well

    Isosorbide Mononitrate in Heart Failure with Preserved Ejection Fraction.

    Get PDF
    BACKGROUND: Nitrates are commonly prescribed to enhance activity tolerance in patients with heart failure and a preserved ejection fraction. We compared the effect of isosorbide mononitrate or placebo on daily activity in such patients. METHODS: In this multicenter, double-blind, crossover study, 110 patients with heart failure and a preserved ejection fraction were randomly assigned to a 6-week dose-escalation regimen of isosorbide mononitrate (from 30 mg to 60 mg to 120 mg once daily) or placebo, with subsequent crossover to the other group for 6 weeks. The primary end point was the daily activity level, quantified as the average daily accelerometer units during the 120-mg phase, as assessed by patient-worn accelerometers. Secondary end points included hours of activity per day during the 120-mg phase, daily accelerometer units during all three dose regimens, quality-of-life scores, 6-minute walk distance, and levels of N-terminal pro-brain natriuretic peptide (NT-proBNP). RESULTS: In the group receiving the 120-mg dose of isosorbide mononitrate, as compared with the placebo group, there was a nonsignificant trend toward lower daily activity (-381 accelerometer units; 95% confidence interval [CI], -780 to 17; P=0.06) and a significant decrease in hours of activity per day (-0.30 hours; 95% CI, -0.55 to -0.05; P=0.02). During all dose regimens, activity in the isosorbide mononitrate group was lower than that in the placebo group (-439 accelerometer units; 95% CI, -792 to -86; P=0.02). Activity levels decreased progressively and significantly with increased doses of isosorbide mononitrate (but not placebo). There were no significant between-group differences in the 6-minute walk distance, quality-of-life scores, or NT-proBNP levels. CONCLUSIONS: Patients with heart failure and a preserved ejection fraction who received isosorbide mononitrate were less active and did not have better quality of life or submaximal exercise capacity than did patients who received placebo. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT02053493.)

    Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing.

    Get PDF
    Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs
    • …
    corecore