628 research outputs found

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    The response function of a sphere in a viscoelastic two-fluid medium

    Full text link
    In order to address basic questions of importance to microrheology, we study the dynamics of a rigid sphere embedded in a model viscoelastic medium consisting of an elastic network permeated by a viscous fluid. We calculate the complete response of a single bead in this medium to an external force and compare the result to the commonly-accepted, generalized Stokes-Einstein relation (GSER). We find that our response function is well approximated by the GSER only within a particular frequency range determined by the material parameters of both the bead and the network. We then discuss the relevance of this result to recent experiments. Finally we discuss the approximations made in our solution of the response function by comparing our results to the exact solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure

    An Analogy between Bin Packing Problem and Permutation Problem: A New Encoding Scheme

    Get PDF
    Part 2: Knowledge Discovery and SharingInternational audienceThe bin packing problem aims to pack a set of items in a minimum number of bins, with respect to the size of the items and capacity of the bins. This is an NP-hard problem. Several approach methods have been developed to solve this problem. In this paper, we propose a new encoding scheme which is used in a hybrid resolution: a metaheuristic is matched with a list algorithm (Next Fit, First Fit, Best Fit) to solve the bin packing problem. Any metaheuristic can be used but in this paper, our proposition is implemented on a single solution based metaheuristic (stochastic descent, simulated annealing, kangaroo algorithm). This hybrid method is tested on literature instances to ensure its good results

    Effective Lagrangian description of the lepton flavor violating decays Z-->li lj

    Full text link
    A comprehensive analysis of the lepton flavor violating (LFV) decays Z-->li lj is presented within the effective Lagrangian approach. Both the decoupling and nondecoupling scenarios are explored. The experimental constraints from li --> lj lk \bar{lk} and li -->lj gamma as well as some relationships arising from the gauge invariance of the effective Lagrangian are used to put constraints on Z-->li lj. It is found that while current experimental data impose very strong constraints on Z-->mu e, the channel Z --> tau mu (e)still may be at the reach of the planned TESLA collider.Comment: References added, final version to appear in Physical Review

    Atenolol versus losartan in children and young adults with Marfan's syndrome

    Get PDF
    BACKGROUND : Aortic-root dissection is the leading cause of death in Marfan's syndrome. Studies suggest that with regard to slowing aortic-root enlargement, losartan may be more effective than beta-blockers, the current standard therapy in most centers. METHODS : We conducted a randomized trial comparing losartan with atenolol in children and young adults with Marfan's syndrome. The primary outcome was the rate of aortic-root enlargement, expressed as the change in the maximum aortic-root-diameter z score indexed to body-surface area (hereafter, aortic-root z score) over a 3-year period. Secondary outcomes included the rate of change in the absolute diameter of the aortic root; the rate of change in aortic regurgitation; the time to aortic dissection, aortic-root surgery, or death; somatic growth; and the incidence of adverse events. RESULTS : From January 2007 through February 2011, a total of 21 clinical centers enrolled 608 participants, 6 months to 25 years of age (mean [+/- SD] age, 11.5 +/- 6.5 years in the atenolol group and 11.0 +/- 6.2 years in the losartan group), who had an aorticroot z score greater than 3.0. The baseline-adjusted rate of change (+/- SE) in the aortic-root z score did not differ significantly between the atenolol group and the losartan group (-0.139 +/- 0.013 and -0.107 +/- 0.013 standard-deviation units per year, respectively; P = 0.08). Both slopes were significantly less than zero, indicating a decrease in the degree of aortic-root dilatation relative to body-surface area with either treatment. The 3-year rates of aortic-root surgery, aortic dissection, death, and a composite of these events did not differ significantly between the two treatment groups. CONCLUSIONS : Among children and young adults with Marfan's syndrome who were randomly assigned to losartan or atenolol, we found no significant difference in the rate of aorticroot dilatation between the two treatment groups over a 3-year period

    Computational ethics

    Get PDF
    Technological advances are enabling roles for machines that present novel ethical challenges. The study of 'AI ethics' has emerged to confront these challenges, and connects perspectives from philosophy, computer science, law, and economics. Less represented in these interdisciplinary efforts is the perspective of cognitive science. We propose a framework – computational ethics – that specifies how the ethical challenges of AI can be partially addressed by incorporating the study of human moral decision-making. The driver of this framework is a computational version of reflective equilibrium (RE), an approach that seeks coherence between considered judgments and governing principles. The framework has two goals: (i) to inform the engineering of ethical AI systems, and (ii) to characterize human moral judgment and decision-making in computational terms. Working jointly towards these two goals will create the opportunity to integrate diverse research questions, bring together multiple academic communities, uncover new interdisciplinary research topics, and shed light on centuries-old philosophical questions.publishedVersio

    Computational ethics

    Get PDF
    Technological advances are enabling roles for machines that present novel ethical challenges. The study of 'AI ethics' has emerged to confront these challenges, and connects perspectives from philosophy, computer science, law, and economics. Less represented in these interdisciplinary efforts is the perspective of cognitive science. We propose a framework – computational ethics – that specifies how the ethical challenges of AI can be partially addressed by incorporating the study of human moral decision-making. The driver of this framework is a computational version of reflective equilibrium (RE), an approach that seeks coherence between considered judgments and governing principles. The framework has two goals: (i) to inform the engineering of ethical AI systems, and (ii) to characterize human moral judgment and decision-making in computational terms. Working jointly towards these two goals will create the opportunity to integrate diverse research questions, bring together multiple academic communities, uncover new interdisciplinary research topics, and shed light on centuries-old philosophical questions

    Influence of product placement in children's movies on children's snack choices

    Get PDF
    Background Media exposure affects health, including obesity risk. Children's movies often contain food placements—frequently unhealthy foods. However, it is not known if these cues influence children's food choices or consumption after viewing. We explored whether children's snack choices or consumption differs based on: 1) recent exposure to movies with high versus low product placement of unhealthy foods; and 2) children's weight status. Methods Children ages 9–11 were assigned to watch a high (“Alvin and the Chipmunks,” n = 54) or low (“Stuart Little,” n = 60) product-placement movie. After viewing, participants selected a snack choice from each of five categories, several of which were specifically featured in “Alvin.” Uneaten snacks from each participant were weighed upon completion. Snack choice and amount consumed by movie were compared by t-tests, and differences in snack choices by movie were tested with logistic regression. Results Participants consumed an average of 800.8 kcal; mean kcal eaten did not vary by movie watched. Participants who watched the high product-placement movie had 3.1 times the odds (95% CI 1.3–7.2) of choosing cheese balls (most featured snack) compared to participants who watched the low product-placement movie. Children who were overweight or obese consumed a mean of 857 kcal (95% CI: 789–925) compared to 783 kcal (95% CI: 742–823, p = 0.09) for children who were underweight or healthy weight. Children's weight status did not significantly affect their choice of snack. Conclusions Branding and obesogenic messaging in children's movies influenced some choices that children made about snack foods immediately following viewing, especially food with greatest exposure time in the film, but did not affect total calories consumed. Future studies should examine how the accumulation of these messages affects children's long-term food choices

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    • …
    corecore