2,118 research outputs found
The twin paradox in compact spaces
Twins travelling at constant relative velocity will each see the other's time
dilate leading to the apparent paradox that each twin believes the other ages
more slowly. In a finite space, the twins can both be on inertial, periodic
orbits so that they have the opportunity to compare their ages when their paths
cross. As we show, they will agree on their respective ages and avoid the
paradox. The resolution relies on the selection of a preferred frame singled
out by the topology of the space.Comment: to be published in PRA, 3 page
Filling historical data gaps to foster solutions in marine conservation
Ecological data sets rarely extend back more than a few decades, limiting our understanding of environmental change and its drivers. Marine historical ecology has played a critical role in filling these data gaps by illuminating the magnitude and rate of ongoing changes in marine ecosystems. Yet despite a growing body of knowledge, historical insights are rarely explicitly incorporated in mainstream conservation and management efforts. Failing to consider historical change can have major implications for conservation, such as the ratcheting down of expectations of ecosystem quality over time, leading to less ambitious targets for recovery or restoration. We discuss several unconventional sources used by historical ecologists to fill data gaps - including menus, newspaper articles, cookbooks, museum collections, artwork, benthic sediment cores - and novel techniques for their analysis. We specify opportunities for the integration of historical data into conservation and management, and highlight the important role that these data can play in filling conservation data gaps and motivating conservation actions. As historical marine ecology research continues to grow as a multidisciplinary enterprise, great opportunities remain to foster direct linkages to conservation and improve the outlook for marine ecosystems
Thermal and back-action noises in dual-sphere gravitational-waves detectors
We study the sensitivity limits of a broadband gravitational-waves detector
based on dual resonators such as nested spheres. We determine both the thermal
and back-action noises when the resonators displacements are read-out with an
optomechanical sensor. We analyze the contributions of all mechanical modes,
using a new method to deal with the force-displacement transfer functions in
the intermediate frequency domain between the two gravitational-waves sensitive
modes associated with each resonator. This method gives an accurate estimate of
the mechanical response, together with an evaluation of the estimate error. We
show that very high sensitivities can be reached on a wide frequency band for
realistic parameters in the case of a dual-sphere detector.Comment: 10 pages, 7 figure
Combinatorial Markov chains on linear extensions
We consider generalizations of Schuetzenberger's promotion operator on the
set L of linear extensions of a finite poset of size n. This gives rise to a
strongly connected graph on L. By assigning weights to the edges of the graph
in two different ways, we study two Markov chains, both of which are
irreducible. The stationary state of one gives rise to the uniform
distribution, whereas the weights of the stationary state of the other has a
nice product formula. This generalizes results by Hendricks on the Tsetlin
library, which corresponds to the case when the poset is the anti-chain and
hence L=S_n is the full symmetric group. We also provide explicit eigenvalues
of the transition matrix in general when the poset is a rooted forest. This is
shown by proving that the associated monoid is R-trivial and then using
Steinberg's extension of Brown's theory for Markov chains on left regular bands
to R-trivial monoids.Comment: 35 pages, more examples of promotion, rephrased the main theorems in
terms of discrete time Markov chain
Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit
The LFI radiometers use a pseudo-correlation design where the signal from the
sky is continuously compared with a stable reference signal, provided by a
cryogenic reference load system. The reference unit is composed by small
pyramidal horns, one for each radiometer, 22 in total, facing small absorbing
targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately
4.5 K. Horns and targets are separated by a small gap to allow thermal
decoupling. Target and horn design is optimized for each of the LFI bands,
centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the
radiometer 20K module or connected via external electro-formed bended
waveguides. The requirement of high stability of the reference signal imposed a
careful design for the radiometric and thermal properties of the loads.
Materials used for the manufacturing have been characterized for thermal, RF
and mechanical properties. We describe in this paper the design and the
performance of the reference system.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in JINST. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The definitive publisher authenticated version is available
online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure
Three-body interactions in colloidal systems
We present the first direct measurement of three-body interactions in a
colloidal system comprised of three charged colloidal particles. Two of the
particles have been confined by means of a scanned laser tweezers to a
line-shaped optical trap where they diffused due to thermal fluctuations. Upon
the approach of a third particle, attractive three-body interactions have been
observed. The results are in qualitative agreement with additionally performed
nonlinear Poissson-Boltzmann calculations, which also allow us to investigate
the microionic density distributions in the neighborhood of the interacting
colloidal particles
Prevalence of potential underlying aetiology of macrocytic anaemia in Dutch general practice
Background: Macrocytic anaemia (MCV \xe2\x89\xa5 100 fL) is a relatively common finding in general practice. However, literature on the prevalence of the different causes in this population is limited. The prevalence of macrocytic anaemia and its underlying aetiology were analysed in a general practice population. The potential effect of the different aetiology on survival was also evaluated. Methods: Between the 1st of February 2007 and the 1st of February 2015, patients aged 50 years or older and presenting to their general practitioner with a newly diagnosed anaemia, were included in the study. Anaemia was defined as haemoglobin level below 13.7 g/dL in men and below 12.1 g/dL in women. A broad range of laboratory tests was performed for each patient. The causes of anaemia were consequently determined by two independent observers based on the laboratory results. Results: Of the 3324 included patients, 249 (7.5 %) displayed a macrocytic anaemia and were subsequently analysed. An underlying explanation could be established in 204 patients (81.9 %) with 27 patients (13.2 %) displaying multiple causes. Classic aetiology (i.e. alcohol abuse, vitamin B12/folic acid deficiency, haemolysis and possible bone marrow disease) was found in 115 patients. Alternative causes (i.e. anaemia of chronic disease, iron deficiency, renal anaemia and other causes) were encountered in 101 patients. In addition, a notable finding was the median gamma GT of 277 U/L in patients diagnosed with alcohol abuse (N = 24, IQR 118.0-925.5) and 23 U/L in the remaining cohort (N = 138, IQR 14.0-61.0). The distribution of gamma GT values was statistically different (P < 0.001). Five year survival rates were determined for six categories of causes, ranging from 39.9 % (95 % CI 12.9-66.9) for renal anaemia to 76.2 % (95 % CI 49.4-103.0) for the category multiple causes. Conclusion: In addition to classic explanations for macrocytosis, alternative causes are frequently encountered in patients with macrocytic anaemia in general practice
On Local Behavior of Holomorphic Functions Along Complex Submanifolds of C^N
In this paper we establish some general results on local behavior of
holomorphic functions along complex submanifolds of \Co^{N}. As a corollary,
we present multi-dimensional generalizations of an important result of Coman
and Poletsky on Bernstein type inequalities on transcendental curves in
\Co^{2}.Comment: minor changes in the formulation and the proof of Lemma 8.
Universality in Bacterial Colonies
The emergent spatial patterns generated by growing bacterial colonies have
been the focus of intense study in physics during the last twenty years. Both
experimental and theoretical investigations have made possible a clear
qualitative picture of the different structures that such colonies can exhibit,
depending on the medium on which they are growing. However, there are
relatively few quantitative descriptions of these patterns. In this paper, we
use a mechanistically detailed simulation framework to measure the scaling
exponents associated with the advancing fronts of bacterial colonies on hard
agar substrata, aiming to discern the universality class to which the system
belongs. We show that the universal behavior exhibited by the colonies can be
much richer than previously reported, and we propose the possibility of up to
four different sub-phases within the medium-to-high nutrient concentration
regime. We hypothesize that the quenched disorder that characterizes one of
these sub-phases is an emergent property of the growth and division of bacteria
competing for limited space and nutrients.Comment: 12 pages, 5 figure
Cosmological Effects of Radion Oscillations
We show that the redshift of pressureless matter density due to the expansion
of the universe generically induces small oscillations in the stabilized radius
of extra dimensions (the radion field). The frequency of these oscillations is
proportional to the mass of the radion and can have interesting cosmological
consequences. For very low radion masses () these low frequency oscillations lead to oscillations in
the expansion rate of the universe. The occurrence of acceleration periods
could naturally lead to a resolution of the coincidence problem, without need
of dark energy. Even though this scenario for low radion mass is consistent
with several observational tests it has difficulty to meet fifth force
constraints. If viewed as an effective Brans-Dicke theory it predicts
( is the number of extra dimensions), while
experiments on scales larger than imply . By deriving the
generalized Newtonian potential corresponding to a massive toroidally compact
radion we demonstrate that Newtonian gravity is modified only on scales smaller
than . Thus, these constraints do not apply for
(high frequency oscillations) corresponding to scales less than the current
experiments (). Even though these high frequency oscillations can not
resolve the coincidence problem they provide a natural mechanism for dark
matter generation. This type of dark matter has many similarities with the
axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and
some additional references include
- …