102 research outputs found

    Partial dynamical symmetry as a selection criterion for many-body interactions

    Get PDF
    We propose the use of partial dynamical symmetry (PDS) as a selection criterion for higher-order terms in situations when a prescribed symmetry is obeyed by some states and is strongly broken in others. The procedure is demonstrated in a first systematic classification of many-body interactions with SU(3) PDS that can improve the description of deformed nuclei. As an example, the triaxial features of the nucleus 156Gd are analyzed.Comment: 5 pages, 3 figures, Phys. Rev. C, in pres

    Partial Dynamical Symmetry in the Symplectic Shell Model

    Get PDF
    We present an example of a partial dynamical symmetry (PDS) in an interacting fermion system and demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole interaction, thus shedding new light on this important interaction. Specifically, in the framework of the symplectic shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU(3) symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic expressions for the energies of these states and E2 transition strengths between them. Characteristics of both pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate, as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously established partial SU(3) symmetry in the Interacting Boson Model are considered.Comment: 9 figure

    An intrinsic state for an extended version of the interacting boson model

    Get PDF
    An intrinsic-state formalism for IBM-4 is presented. A basis of deformed bosons is introduced which allows the construction of a general trial wave function which has Wigner's spin-isospin SU(4) symmetry as a particular limit. Intrinsic-state calculations are compared with exact ones showing good agreement.Comment: 12 pages, TeX (ReVTeX). Content changed. Accepted in Phys. Rev.

    Consistent description of magnetic dipole properties in transitional nuclei

    Full text link
    It is shown that a consistent description of magnetic dipole properties in transitional nuclei can be obtained in the interacting boson model-2 by F-spin breaking mechanism, which is associated with differences between the proton and neutron deformations. In particular, the long standing anomalies observed in the gg-factors of the Os-Pt isotopes are resolved by a proper inclusion of F-spin breaking.Comment: Revtex, 10 pages, 4 figures (available from authors upon request

    Partial dynamical symmetry in quantum Hamiltonians with higher-order terms

    Get PDF
    A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196^{196}Pt

    Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Full text link
    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres

    Sensitivity of tensor analyzing power in the process d+pd+Xd+p\to d+X to the longitudinal isoscalar form factor of the Roper resonance electroexcitation

    Get PDF
    The tensor analyzing power of the process d+pd+Xd + p \to d + X, for forward deuteron scattering in the momentum interval 3.7 to 9 GeV/c, is studied in the framework of ω\omega exchange in an algebraic collective model for the electroexcitation of nucleon resonances. We point out a special sensitivity of the tensor analyzing power to the isoscalar longitudinal form factor of the Roper resonance excitation. The main argument is that the S11(1535)S_{11}(1535), D13(1520)D_{13}(1520) and S11(1650)S_{11}(1650) resonances have only isovector longitudinal form factors. It is the longitudinal form factor of the Roper excitation, which plays an important role in the tt-dependence of the tensor analyzing power. We discuss possible evidence of swelling of hadrons with increasing excitation energy.Comment: 12 pages, 10 figure

    Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei

    Get PDF
    A generalized M1 sum rule for orbital magnetic dipole strength from excited symmetric states to mixed-symmetry states is considered within the proton-neutron interacting boson model of even-even nuclei. Analytic expressions for the dominant terms in the B(M1) transition rates from the first and second 2+2^+ states are derived in the U(5) and SO(6) dynamic symmetry limits of the model, and the applicability of a sum rule approach is examined at and in-between these limits. Lastly, the sum rule is applied to the new data on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio nd(01+)/nd(22+)0.6nd(0^+_1)/nd(2^+_2) \approx 0.6 is obtained in a largely parameter-independent wayComment: 19 pages, 3 figures, Revte

    Test of Nuclear Wave Functions for Pseudospin Symmetry

    Get PDF
    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.Comment: 11 pages, 4 figures, minor changes in text and figures to conform with PRL requirement
    corecore