40 research outputs found

    A review of the diversity and impact of invasive non-native species in tropical marine ecosystems

    Get PDF
    Tropical marine ecosystems are biologically diverse and economically invaluable. However, they are severely threatened from impacts associated with climate change coupled with localized and regional stressors, such as pollution and overfishing. Non-native species (sometimes referred to as ‘alien’ species) are another major threat facing these ecosystems, although rarely discussed and overshadowed by the other stressors mentioned above. NNS can be introduced accidentally (for example via shipping activities) and/or sometimes intentionally (for aquaculture or by hobbyists). Understanding the extent of the impacts NNS have on native flora and fauna often remains challenging, along with ascertaining when the species in question actually became ‘invasive’. Here we review the status of this threat across key tropical marine ecosystems such as coral reefs, algae meadows, mangroves, and seagrass beds. We aim to provide a baseline of where invasive NNS can be found, when they are thought to have been introduced and what impact they are thought to be having on the native ecosystems they now inhabit. In the appended material we provide a comprehensive list of NNS covering key groups such as macroalgae, sponges, seagrasses and mangroves, anthozoans, bryozoans, ascidians, fishes, and crustaceans.N

    Intergenic and Genic Sequence Lengths Have Opposite Relationships with Respect to Gene Expression

    Get PDF
    Eukaryotic genomes are mostly composed of noncoding DNA whose role is still poorly understood. Studies in several organisms have shown correlations between the length of the intergenic and genic sequences of a gene and the expression of its corresponding mRNA transcript. Some studies have found a positive relationship between intergenic sequence length and expression diversity between tissues, and concluded that genes under greater regulatory control require more regulatory information in their intergenic sequences. Other reports found a negative relationship between expression level and gene length and the interpretation was that there is selection pressure for highly expressed genes to remain small. However, a correlation between gene sequence length and expression diversity, opposite to that observed for intergenic sequences, has also been reported, and to date there is no testable explanation for this observation. To shed light on these varied and sometimes conflicting results, we performed a thorough study of the relationships between sequence length and gene expression using cell-type (tissue) specific microarray data in Arabidopsis thaliana. We measured median gene expression across tissues (expression level), expression variability between tissues (expression pattern uniformity), and expression variability between replicates (expression noise). We found that intergenic (upstream and downstream) and genic (coding and noncoding) sequences have generally opposite relationships with respect to expression, whether it is tissue variability, median, or expression noise. To explain these results we propose a model, in which the lengths of the intergenic and genic sequences have opposite effects on the ability of the transcribed region of the gene to be epigenetically regulated for differential expression. These findings could shed light on the role and influence of noncoding sequences on gene expression

    Angiotensin-converting enzyme I/D polymorphism and preeclampsia risk: evidence of small-study bias

    Get PDF
    BACKGROUND: Inappropriate activation of the renin-angiotensin system may play a part in the development of preeclampsia. An insertion/deletion polymorphism within the angiotensin-I converting enzyme gene (ACE-I/D) has shown to be reliably associated with differences in angiotensin-converting enzyme (ACE) activity. However, previous studies of the ACE-I/D variant and preeclampsia have been individually underpowered to detect plausible genotypic risks. METHODS AND FINDINGS: A prospective case-control study was conducted in 1,711 unrelated young pregnant women (665 preeclamptic and 1,046 healthy pregnant controls) recruited from five Colombian cities. Maternal blood was obtained to genotype for the ACE-I/D polymorphism. Crude and adjusted odds ratio (OR) and 95% confidence interval (CI) using logistic regression models were obtained to evaluate the strength of the association between ACE-I/D variant and preeclampsia risk. A meta-analysis was then undertaken of all published studies to February 2006 evaluating the ACE-I/D variant in preeclampsia. An additive model (per-D-allele) revealed a null association between the ACE-I/D variant and preeclampsia risk (crude OR = 0.95 [95% CI, 0.81-1.10]) in the new case-control study. Similar results were obtained after adjusting for confounders (adjusted per-allele OR = 0.90 [95% CI, 0.77-1.06]) and using other genetic models of inheritance. A meta-analysis (2,596 cases and 3,828 controls from 22 studies) showed a per-allele OR of 1.26 (95% CI, 1.07-1.49). An analysis stratified by study size showed an attenuated OR toward the null as study size increased. CONCLUSIONS: It is highly likely that the observed small nominal increase in risk of preeclampsia associated with the ACE D-allele is due to small-study bias, similar to that observed in cardiovascular disease. Reliable assessment of the origins of preeclampsia using a genetic approach may require the establishment of a collaborating consortium to generate a dataset of adequate size

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Age, growth, and recruitment patterns of juvenile ladyfish (Elops sp) from the east coast of Florida (USA)

    No full text
    Ladyfish (Elops sp) are a common and economically valuable coastal nearshore species found along coastal beaches, bays, and estuaries of the southeastern United States, and subtropical and tropical regions worldwide. Previously, ladyfish were a substantial bycatch in Florida’s commercial fisheries, but changes in regulations significantly reduced commercial landings. Today, ladyfish are still taken in commercial fisheries in Florida, but many are also taken by recreational anglers. Life-history information and research interest in ladyfish is almost non-existent, especially information on age and growth. Thus, the overarching purpose of this study was to expand our understanding of ladyfish age and growth characteristics. The specific objectives were to describe, for the first time, age, growth, and recruitment patterns of juvenile ladyfish from the east coast of Florida (USA). In the Indian River Lagoon (IRL), annual monthly length-frequency distributions were confounded because a few small individuals recruited throughout the year; monthly length-frequency data generally demonstrated a cyclical pattern. The smallest were collected in September and the largest in May. Post-hoc analysis showed no significant difference in length between August and May, or among the other months. In Volusia County (VC), annual monthly length-frequency distribution demonstrated growth generally occurred from late-winter and spring to summer. The smallest ladyfish were collected in February and the largest in August. On average, the absolute growth rate in the IRL was 36.3 mm in 60 days or 0.605 mm day−1. Cohort-specific daily growth rates, elevations, and coincidentals were similar among sampling years. Cohort-specific growth rates ranged from 1.807 in 1993 to 1.811 mm day−1 in 1994. Overall, growth was best (i.e., goodness of fit) described by exponential regression. On average, the absolute growth rate in VC was 28 mm in 150 days or 0.1866 mm day−1. Cohort-specific daily growth rates were significantly different among sampling years; however, the elevations and coincidentals were similar. Cohort-specific growth rates ranged from 1.741 in 1994 to 1.933 mm day−1 in 1993. Mean ladyfish growth was best described by linear regression; however, natural growth was explained better by exponential regression. In the IRL, the corrected exponential growth equation yielded a size-at-age 1 of 156.0 mm SL, which corresponded to an estimated growth rate of 0.4356 mm day−1. In VC, the corrected exponential growth equation yielded a size-at-age 1 of 80 mm SL corresponding to an estimated growth rate of 0.2361 mm day−1

    Spatio-temporal patterns of the oceanic conditions and nearshore marine community in the Mid-Atlantic Bight (New Jersey, USA)

    No full text
    Oceanic environmental conditions influence, shape, and control the geographical range, spatial distribution, abundance, and size composition of marine fauna. Water temperature, salinity, dissolved oxygen, depth, and sediment type influence select fish life-history characteristics and community structure. Marine communities are vulnerable to major changes in environmental conditions, but the response and severity depends on various biological or ecological factors, such as resilience to stress or adaptation. Researchers around the world have predicted and documented numerous alterations in fish communities caused by ongoing significant physicochemical shifts associated with natural and potentially unnatural sources, but published studies describing the historical conditions are lacking for most regions around the world, including the coastal waters off New Jersey. Given the need to understand these processes, a multifaceted investigation was undertaken to describe, evaluate, and compare the oceanic conditions and nearshore marine fauna community off New Jersey during 1988 through 2015. Findings showed the oceanic conditions varied over time and space. Mean surface water temperature increased significantly about 0.6 °C per decade, mean salinity decreased about 1.3 psu per decade, and dissolved oxygen increased 0.09 mg/l per decade. Over 20.4 million fish and invertebrates (1,338.3 mt) representing 214 (water temperature preference classified) species (not including unidentified species) were collected within 15 strata (areas: 12−26) off the coast of New Jersey from 1988 to 2015. Three marine fauna water temperature preference groups (coldwater-adapted, warmwater-adapted, and subtropic-adapted) were identified in the study area. The main coldwater-adapted species collected were longfin squid (Loligo pealei) (n = 2, 225, 975), Atlantic herring (Clupea harengus) (n = 544, 032), and little skate (Leucoraja erinacea) (n = 316, 356), while Atlantic butterfish (Peprilus triacanthus) (n = 2, 873, 138), scup (Stenotomus chrysops) (n = 1, 318, 569), and northern searobin (Prionotus carolinus) (n = 503, 230) represented the warmwater-adapted group. Bay anchovy (Anchoa mitchilli) (n = 9, 227, 960), striped anchovy (Anchoa hepsetus) (n = 245, 214), and Atlantic moonfish (Vomer setapinnis) (n = 38, 691) denoted the subtropic-adapted group. Subtropic-adapted species were the most abundant and coldwater-adapted were the least abundant water temperature preference group. The estimated abundance of coldwater-adapted species declined, warmwater-adapted species slightly increased, and subtropic-adapted species decreased with time, which suggest the environmental conditions are influencing and thereby shifting the marine community

    International fisheries agreement: Review of the International Commission for the Conservation of Atlantic Tunas: Case study--Shark management

    No full text
    To properly manage world fisheries, especially highly migratory species, there are numerous treaties that have been implemented by specialized international fishery commissions. One of the oldest organizations is the International Commission for the Conservation of Atlantic Tunas (ICCAT). The main focus of this review was to summarize the history, roles and responsibilities of ICCAT, and to evaluate ICCAT's management of sharks in general and specifically for shortfin mako (Isurus oxyrinchus) shark. This review found that the Convention was established 40 years ago, but it was not until 2004 that the commission conducted its first population assessment on pelagic sharks.Environmental treaties ICCAT Shark management Shortfin mako shark Isurus oxyrinchus

    Characterization of the southeastern US black sea bass (Centropristis striata) pot commercial fishery and implications for western North Atlantic right whale (Eubalaena glacialis) management and policy

    No full text
    A vital component of marine policy is the conservation and management of diverse marine resources. In the southeastern US, commercial fishermen target black sea bass (Centropristis striata) with pots from North Carolina to Cape Canaveral, Florida. During the fall through spring fishing season, western North Atlantic right whale (Eubalaena glacialis) distribution overlaps the black sea bass commercial pot fishery. Fishermen interviews revealed that the number of pots set ranged from 3 to 240 and the number of pots set per trawl ranged from 1 to 18. Generally, the amount of gear increased from south to north.Black sea bass Centropristis striata Pot fishery Western North Atlantic right whale Eubalaena glacialis ALWTRP Whale management Mortality Entanglement

    Establishment and closure of the directed Florida whiting (Menticirrhus americanus) fishery and implications for North Atlantic right whale (Eubalaena glacialis) conservation and management

    No full text
    Today, ocean and coastal marine resource management is extremely complex. Marine resource managers are charged with conserving and managing many diverse species. Southern kingfish (Menticirrhus americanus), commonly known as whiting, are found from southern New England to Florida. During the fall through winter, western North Atlantic right whales (Eubalaena glacialis) are primarily found in the coastal nearshore waters off South Carolina, Georgia, and Florida, overlapping the whiting's range and habitat. In January 2006, a right whale calf was discovered dead, as a result of gillnet entanglement, in close proximity to the Florida commercial whiting fishing grounds; thus, to assist the National Marine Fisheries Service (NMFS) with developing appropriated right whale conservation management measures, this study evaluated the newly established commercial Florida whiting fishery. Findings revealed that the whiting fishery was established in 2004 and the fishery was prosecuted during the time and area where right whales were found. Moreover, the study found that whiting landings, market value, catch-per-unit-effort (CPUE), dealers, and fishing effort significantly increased during 2000 through 2005. As a result of the right whale calf mortality and threat of gillnet gear to whales, the NMFS prohibited the use of gillnet gear in the US southeastern waters, which inevitably closed the newly established whiting fishery.Whiting Southern kingfish Menticirrhus americanus North Atlantic right whale Gillnet Commercial fishing Northeastern Florida Southeast US Restricted Area Eubalaena glacialis
    corecore