21 research outputs found

    Advances in Rodent Research Missions on the International Space Station

    Get PDF
    A Research platform for rodent experiment on the ISS is an essential tool for advancing biomedical research in space. The Rodent Research allows for experiments of much longer duration that experiments on the Shuttle. NASAs Rodent Research (RR)-1 mission was successfully completed, including post-flight analysis and achieved a number of objectives including validation of flight hardware, on-orbit operations, and science capabilities that were developed at the NASA Ames Research Center. Briefly, twenty C57BL/6J adult female mice were launched on the SpX4 Dragon vehicle, which thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all animals were healthy and displayed normal behavior without any significant signs of stress. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. The data obtained from the flight mice were comparable to those from the 3 groups of control mice (baseline, vivarium and ground controls), suggesting that the ISS has adequate capability to support long-duration rodent experimentations. We recovered over 35 tissues from 40 RR1 frozen carcasses, yielded over 3200 aliquots of tissues, and distributed to the scientific community, including NASAs GeneLab and scientists in the U.S. through Biospecimen Sharing Program via Ames Life Science Data Archive. Tissues were also distributed to Russian research colleagues at the Institute for Biomedical Problems. The expression levels of select genes including albumin, catalase, GAPDH, HMGCoA Reductase, and IGF1 were determined using RNA isolated from the livers by qPCR and no significant differences by one factor ANOVA were found between flight and ground control groups. In addition, some of the liver samples were subject to transcriptomics, epigenomics and proteomics. The data are now available to the scientific community through GeneLabs open science data website. Since the RR1 mission, another long duration mission (Rodent Research-2) was completed on the ISS in 2015 in which 20 female C57 BL/6J mice were successfully maintained on the ISS for varying time points, with the last group of 5 animals being on-orbit for 54 days. This second Rodent Research flight expanded the programs capabilities with the introduction of new technologies including blood collection and separation and bone densitometry scanning. Furthermore, we have continued to expand the ISSs capabilities by running a series of ground-based verification testing using male mice. Our next step is to fly male mice for Rodent Research-4 on SpaceX-10 to study the effects of microgravity on bone healing and regeneration. It will be the first long-duration mission using male mice using Rodent Hardware. In addition, the number of mice will increase from 20 mice (on RR-1 and RR-2) to 40 for RR-4. When samples return to Earth, a number of tissues will be dissected from the frozen carcasses and select tissue samples will become available to the scientific community via BSP. Altogether, we have continued to expand our capabilities for performing long-duration missions on the ISS as emphasized in the National Research Councils Decadal Survey released in 2011 and to maximize science return from each mission

    Rodent Research Development for Long Duration Studies on the International Space Station

    Get PDF
    Rodent research in space is needed to advance our understanding of the health risks,consequences and possible countermeasures to protect crew during future, long duration missions. TheAnimal Enclosure Module (AEM) was designed originally to support habitation of rats and mice onrelatively short duration, Shuttle missions (<19 days). The AEM was flown previously on 27 SpaceShuttle missions, and recently was modified extensively to support future long duration space biology andbiomedical research on the International Space Station (ISS). In consultation with a Science WorkingGroup comprised of veterinarians and investigators experienced in rodent spaceflight experimentation inspace, the Rodent Habitat project team at Ames Research Center modified existing hardware, developednew hardware, operations, and science activities, and performed a series of ground-based operational andscience habitat verification tests in preparation for the first validation flight

    Rodent Habitat on ISS: Advances in Capability for Determining Spaceflight Effects on Mammalian Physiology

    Get PDF
    Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space

    Experimental Design for Pre-Clinical Animal Model Study in Microgravity

    Get PDF
    The Rodent Research program at NASAs Ames Research Center (ARC) has pioneered a new research capability on the International Space Station in less than four years and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, and training crew for research purposes on-orbit. Animal models are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics. Advancement in alleviating ground diseases such as muscle atrophy and osteoporosis can come from the study of similar conditions that are known to occur as a result of exposure to the spaceflight environment. During the completion of the flight phase of two missions, our practices, hardware and operations evolved from tested to developed standards, which successfully translated the studies from ground to space. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases on ground and in space. Here, we present methods developed for the translation of a rodent experiment to the ISS including a description of hardware and kits available for investigators and a discussion of operational constraints

    Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models

    Full text link
    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting
    corecore