2,244 research outputs found
Theory and design of quantum cascade lasers in (111) n-type Si/SiGe
Although most work towards the realization of group IV quantum cascade lasers (QCLs) has focused on valence band transitions, there are many desirable properties associated with the conduction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructures can be overcome by moving to the (111) growth direction. Specifically, a large band offset and low effective mass are achievable and subband degeneracy is preserved. We predict net gain up to lattice temperatures of 90 K in a bound-to-continuum QCL with a double-metal waveguide, and show that a Ge interdiffusion length of at least 8 â„« across interfaces is tolerable
A High-Resolution Combined Scanning Laser- and Widefield Polarizing Microscope for Imaging at Temperatures from 4 K to 300 K
Polarized light microscopy, as a contrast-enhancing technique for optically
anisotropic materials, is a method well suited for the investigation of a wide
variety of effects in solid-state physics, as for example birefringence in
crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy
setup that combines a widefield microscope and a confocal scanning laser
microscope with polarization-sensitive detectors. By using a high numerical
aperture objective, a spatial resolution of about 240 nm at a wavelength of 405
nm is achieved. The sample is mounted on a He continuous flow cryostat
providing a temperature range between 4 K and 300 K, and electromagnets are
used to apply magnetic fields of up to 800 mT with variable in-plane
orientation and 20 mT with out-of-plane orientation. Typical applications of
the polarizing microscope are the imaging of the in-plane and out-of-plane
magnetization via the longitudinal and polar MOKE, imaging of magnetic flux
structures in superconductors covered with a magneto-optical indicator film via
Faraday effect or imaging of structural features, such as twin-walls in
tetragonal SrTiO. The scanning laser microscope furthermore offers the
possibility to gain local information on electric transport properties of a
sample by detecting the beam-induced voltage change across a current-biased
sample. This combination of magnetic, structural and electric imaging
capabilities makes the microscope a viable tool for research in the fields of
oxide electronics, spintronics, magnetism and superconductivity.Comment: 14 pages, 11 figures. The following article has been accepted by
Review of Scientific Instruments. After it is published, it will be found at
http://aip.scitation.org/journal/rs
A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly
Pressure-induced phase-transition sequence in CoF2: An experimental and first-principles study on the crystal, vibrational, and electronic properties
We report a complete structural study of CoF2 under pressure. Its crystal structure and vibrational and electronic properties have been studied both theoretically and experimentally using first-principles density functional theory (DFT) methods, x-ray diffraction, x-ray absorption at Co K-edge experiments, Raman spectroscopy, and optical absorption in the 0–80 GPa range. We have determined the structural phase-transition sequence in CoF2 and corresponding transition pressures. The results are similar to other transition-metal difluorides such as FeF2 but different to ZnF2 and MgF2, despite that the Co2+ size (ionic radius) is similar to Zn2+ and Mg2+. We found that the complete phase-transition sequence is tetragonal rutile (P42/mnm) → CaCl2 type (orthorhombic Pnnm) → distorted PdF2 (orthorhombic Pbca)+PdF2 (cubic Pa3¯) in coexistence → fluorite (cubic Fm3¯m) → cotunnite (orthorhombic Pnma). It was observed that the structural phase transition to the fluorite at 15 GPa involves a drastic change of coordination from sixfold octahedral to eightfold cubic with important modifications in the vibrational and electronic properties. We show that the stabilization of this high-pressure cubic phase is possible under nonhydrostatic conditions since ideal hydrostaticity would stabilize the distorted-fluorite structure (tetragonal I4/mmm) instead. Although the first rutile → CaCl2-type second-order phase transition is subtle by Raman spectroscopy, it was possible to define it through the broadening of the Eg Raman mode which is split in the CaCl2-type phase. First-principles DFT calculations are in fair agreement with the experimental Raman mode frequencies, thus providing an accurate description for all vibrational modes and elastic properties of CoF2 as a function of pressure
Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin
The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied >2,800 clones possessing partial sequences (400–500 bp) of the 16S rRNA gene and 348 representative clone sequences (≈1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth’s essential biogeochemical processes
Scenario planning for the Edinburgh city region
This paper examines the application of scenario planning techniques to the detailed and daunting challenge of city re-positioning when policy makers are faced with a heavy history and a complex future context. It reviews a process of scenario planning undertaken in the Edinburgh city region, exploring the scenario process and its contribution to strategies and policies for city repositioning. Strongly rooted in the recent literature on urban and regional economic development, the text outlines how key individuals and organisations involved in the process participated in far-reaching analyses of the possible future worlds in which the Edinburgh city region might find itself
Relation between coronary risk and coronary mortality in women of the Renfrew and Paisley survey: comparison with men
Most epidemiological and intervention studies in patients with coronary artery disease have focused on men, the assumption being that such data can be extrapolated to women. However, there is little evidence to support this belief. We have completed a fifteen-year follow-up of 15 399 adults, including 8262 women, who lived in Renfrew and Paisley and were aged 45-64 years when screened between 1972 and 1976. We identified 490 deaths from coronary heart disease (CHD) in women and 878 in men. Women were more likely to have high cholesterol, to be obese, and to come from lower social classes than men, but they smoked less and had similar blood pressures. The relative risk--top to bottom quintile (95% Cl)--of cholesterol for coronary death after adjustment for all other risk markers was slightly greater in women (1[middle dot]77 [1[middle dot]45, 2[middle dot]16]) than in men (1[middle dot]56 [1[middle dot]32, 1[middle dot]85]), but absolute and attributable risk were lower. Thus, women in the top quintile for cholesterol had lower coronary mortality (6[middle dot]1 deaths per thousand patient years) than men in the bottom quintile (6[middle dot]8 deaths per thousand patient years). Moreover, it was estimated that there would have been only 103 (21 %) fewer CH D deaths in women, yet 211 (24%) fewer in men, if mortality had been the same for women and men in the lowest quintiles of cholesterol. Trends showing similar relative risks in these women, but lower absolute and attributable risks than in men, were present for smoking, diastolic blood pressure, and social class. There was no relation between obesity and coronary death after adjustment for other risks. Our results suggest that some other factors protect women against CHD. The potential for women to reduce their risk of CH D by changes in lifestyle may be less than for men.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30146/1/0000523.pd
Pressure-induced Jahn-Teller suppression in Rb2CuCl4( H2O )2: Pseudo-Jahn-Teller effect
In this work we investigate the variation of the local structure around Cu2+ as well as the crystal structure in Rb2CuCl4(H2O)2 through x-ray absorption spectroscopy (XAS) and x-ray diffraction (XRD) as a function of pressure. We show that the application of pressure induces a local structural change in the Jahn-Teller (JT) CuCl4(H2O)22− complex from an axially elongated complex to a compressed one, yielding disappearance of the JT distortion related to the four in-plane Cl− ligands, which are responsible for the antiferrodistortive structure displayed by the crystal at ambient pressure. According to the Pseudo-Jahn-Teller (PJT) theory (electron-phonon coupling E⊗e), the presence of water ligands enhances the JT release at pressures well below the metallization pressure. The results are compared with recent pressure experiments on A2CuCl4 layered perovskites and heteronuclear CuCl4L2 complex series, L :Cl→H2O→NH3, and explained on the basis of the PJT model
Adjustment to colostomy: stoma acceptance, stoma care self-efficacy and interpersonal relationships
‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2648.2007.04446.xThis paper is a report of a study to examine adjustment and its relationship with stoma acceptance and social interaction, and the link between stoma care self-efficacy and adjustment in the presence of acceptance and social interactions.Peer reviewe
- …