727 research outputs found

    A fine grained heuristic to capture web navigation patterns

    Get PDF
    In previous work we have proposed a statistical model to capture the user behaviour when browsing the web. The user navigation information obtained from web logs is modelled as a hypertext probabilistic grammar (HPG) which is within the class of regular probabilistic grammars. The set of highest probability strings generated by the grammar corresponds to the user preferred navigation trails. We have previously conducted experiments with a Breadth-First Search algorithm (BFS) to perform the exhaustive computation of all the strings with probability above a specified cut-point, which we call the rules. Although the algorithm’s running time varies linearly with the number of grammar states, it has the drawbacks of returning a large number of rules when the cut-point is small and a small set of very short rules when the cut-point is high. In this work, we present a new heuristic that implements an iterative deepening search wherein the set of rules is incrementally augmented by first exploring trails with high probability. A stopping parameter is provided which measures the distance between the current rule-set and its corresponding maximal set obtained by the BFS algorithm. When the stopping parameter takes the value zero the heuristic corresponds to the BFS algorithm and as the parameter takes values closer to one the number of rules obtained decreases accordingly. Experiments were conducted with both real and synthetic data and the results show that for a given cut-point the number of rules induced increases smoothly with the decrease of the stopping criterion. Therefore, by setting the value of the stopping criterion the analyst can determine the number and quality of rules to be induced; the quality of a rule is measured by both its length and probability

    Wearable device to assist independent living.

    Get PDF
    Older people increasingly want to remain living independently in their own homes. The aim of the ENABLE project is to develop a wearable device that can be used both within and outside of the home to support older people in their daily lives and which can monitor their health status, detect potential problems, provide activity reminders and offer communication and alarm services. In order to determine the specifications and functionality required for development of the device user surveys and focus groups were undertaken and use case analysis and scenario modeling carried out. The project has resulted in the development of a wrist worn device and mobile phone combination that can support and assist older and vulnerable wearers with a range of activities and services both inside and outside of their homes. The device is currently undergoing pilot trials in five European countries. The aim of this paper is to describe the ENABLE device, its features and services, and the infrastructure within which it operates

    Monitoring COVID-19 on social media: development of an end-to-end natural language processing pipeline using a novel triage and diagnosis approach

    Get PDF
    Background: The COVID-19 pandemic has created a pressing need for integrating information from disparate sources in order to assist decision makers. Social media is important in this respect; however, to make sense of the textual information it provides and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population. Here, we adopt a triage and diagnosis approach to analyzing social media posts using machine learning techniques for the purpose of disease detection and surveillance. We thus obtain useful prevalence and incidence statistics to identify disease symptoms and their severities, motivated by public health concerns. Objective: This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts in order to provide researchers and public health practitioners with additional information on the symptoms, severity, and prevalence of the disease rather than to provide an actionable decision at the individual level. Methods: The text processing pipeline first extracted COVID-19 symptoms and related concepts, such as severity, duration, negations, and body parts, from patients’ posts using conditional random fields. An unsupervised rule-based algorithm was then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations were subsequently used to construct 2 different vector representations of each post. These vectors were separately applied to build support vector machine learning models to triage patients into 3 categories and diagnose them for COVID-19. Results: We reported macro- and microaveraged F1 scores in the range of 71%-96% and 61%-87%, respectively, for the triage and diagnosis of COVID-19 when the models were trained on human-labeled data. Our experimental results indicated that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. In addition, we highlighted important features uncovered by our diagnostic machine learning models and compared them with the most frequent symptoms revealed in another COVID-19 data set. In particular, we found that the most important features are not always the most frequent ones. Conclusions: Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from social media natural language narratives, using a machine learning pipeline in order to provide information on the severity and prevalence of the disease for use within health surveillance systems

    Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy.

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare autosomal recessive disorder of nucleoside metabolism that is caused by mutations in the nuclear thymidine phosphorylase gene (TYMP) gene, encoding for the enzyme thymidine phosphorylase. There are currently no approved treatments for MNGIE. The aim of this study was to investigate the safety, tolerability, and efficacy of an enzyme replacement therapy for the treatment of MNGIE. In this single centre study, three adult patients with MNGIE received intravenous escalating doses of erythrocyte encapsulated thymidine phosphorylase (EE-TP; dose range: 4 to 108 U/kg/4 weeks). EE-TP was well tolerated and reductions in the disease-associated plasma metabolites, thymidine, and deoxyuridine were observed in all three patients. Clinical improvements, including weight gain and improved disease scores, were observed in two patients, suggesting that EE-TP is able to reverse some aspects of the disease pathology. Transient, non-serious adverse events were observed in two of the three patients; these did not lead to therapy discontinuation and they were managed with pre-medication prior to infusion of EE-TP. To conclude, enzyme replacement therapy with EE-TP demonstrated biochemical and clinical therapeutic efficacy with an acceptable clinical safety profile

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Neonatal head and torso vibration exposure during inter-hospital transfer

    Get PDF
    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes

    CpG site degeneration triggered by the loss of functional constraint created a highly polymorphic macaque drug-metabolizing gene, CYP1A2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the pattern of evolutionary changes in drug-metabolizing genes is an important subject not only for evolutionary but for biomedical research. We investigated the pattern of divergence and polymorphisms of macaque <it>CYP1A1 </it>and <it>CYP1A2 </it>genes, which are major drug-metabolizing genes in humans. In humans, <it>CYP1A2 </it>is specifically expressed in livers while <it>CYP1A1 </it>has a wider gene expression pattern in extrahepatic tissues. In contrast, macaque <it>CYP1A2 </it>is expressed at a much lower level than <it>CYP1A1 </it>in livers. Interestingly, a previous study has shown that <it>Macaca fascicularis CYP1A2 </it>harbored unusually high genetic diversity within species. Genomic regions showing high genetic diversity within species is occasionally interpreted as a result of balancing selection, where natural selection maintains highly diverged alleles with different functions. Nevertheless many other forces could create such signatures.</p> <p>Results</p> <p>We found that the <it>CYP1A1/2 </it>gene copy number and orientation has been highly conserved among mammalian genomes. The signature of gene conversion between <it>CYP1A1 </it>and <it>CYP1A2 </it>was detected, but the last gene conversion event in the simian primate lineage occurred before the <it>Catarrhini-Platyrrhini </it>divergence. The high genetic diversity of macaque <it>CYP1A2 </it>therefore cannot be explained by gene conversion between <it>CYP1A1 </it>and <it>CYP1A2</it>. By surveying <it>CYP1A2 </it>polymorphisms in total 91 <it>M. fascicularis </it>and <it>M. mulatta</it>, we found several null alleles segregating in these species, indicating functional constraint on <it>CYP1A2 </it>in macaques may have weakened after the divergence between humans and macaques. We propose that the high genetic diversity in macaque <it>CYP1A2 </it>is partly due to the degeneration of CpG sites, which had been maintained at a high level by purifying selection, and the rapid degeneration process was initiated by the loss of functional constraint on macaque <it>CYP1A2</it>.</p> <p>Conclusions</p> <p>Our findings show that the highly polymorphic <it>CYP1A2 </it>gene in macaques has not been created by balancing selection but by the burst of CpG site degeneration after loss of functional constraint. Because the functional importance of <it>CYP1A1/2 </it>genes is different between humans and macaques, we have to be cautious in extrapolating a drug-testing data using substrates metabolized by <it>CYP1A </it>genes from macaques to humans, despite of their somewhat overlapping substrate specificity.</p
    • …
    corecore