215 research outputs found

    On the destruction of the hidden order in URu2_2Si2_2 by a strong magnetic field

    Full text link
    We present a study of transport properties of the heavy fermion URu2_2Si2_2 in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity, Hall and Nernst data outlines the reconstruction of the Fermi surface in the temperature-field phase diagram. The zero-field ground state is a compensated heavy-electron semi-metal, which is destroyed by magnetic field through a cascade of field-induced transitions. Above 40 T, URu2_2Si2_2 appears to be a polarized heavy fermions metal with a large density of carriers whose effective mass rapidly decreases with increasing magnetic polarization.Comment: published versio

    Heterogeneity in the Relationship between Disinfection By-Products in Drinking Water and Cancer: A Systematic Review.

    Get PDF
    The epidemiological evidence demonstrating the effect of disinfection by-products (DBPs) from drinking water on colon and rectal cancers is well documented. However, no systematic assessment has been conducted to assess the potential effect measure modification (EMM) in the relationship between DBPs and cancer. The objective of this paper is to conduct a systematic literature review to determine the extent to which EMM has been assessed in the relationship between DBPs in drinking water in past epidemiological studies. Selected articles (n = 19) were reviewed, and effect estimates and covariates that could have been used in an EMM assessment were gathered. Approximately half of the studies assess EMM (n = 10), but the majority of studies only estimate it relative to sex subgroups (n = 6 for bladder cancer and n = 2 both for rectal and colon cancers). Although EMM is rarely assessed, several variables that could have a potential modification effect are routinely collected in these studies, such as socioeconomic status or age. The role of environmental exposures through drinking water can play an important role and contribute to cancer disparities. We encourage a systematic use of subgroup analysis to understand which populations or territories are more vulnerable to the health impacts of DBPs

    Hybridization gap and anisotropic far-infrared optical conductivity of URu2Si2

    Full text link
    We performed far-infrared optical spectroscopy measurements on the heavy fermion compound URu 2 Si 2 as a function of temperature. The light's electric-field was applied along the a-axis or the c-axis of the tetragonal structure. We show that in addition to a pronounced anisotropy, the optical conductivity exhibits for both axis a partial suppression of spectral weight around 12 meV and below 30 K. We attribute these observations to a change in the bandstructure below 30 K. However, since these changes have no noticeable impact on the entropy nor on the DC transport properties, we suggest that this is a crossover phenomenon rather than a thermodynamic phase transition.Comment: To be published in Physical Review

    Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa_2Cu_4O_8

    Full text link
    Our knowledge of the ground state of underdoped hole-doped cuprates has evolved considerably over the last few years. There is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry leading to a reconstructed Fermi surface made of small pockets. Quantum oscillations, [Doiron-Leyraud N, et al. (2007) Nature 447:564-568], optical conductivity [Mirzaei SI, et al. (2013) Proc Natl Acad Sci USA 110:5774-5778] and the validity of Wiedemann-Franz law [Grissonnache G, et al. (2016) Phys. Rev. B 93:064513] point to a Fermi liquid regime at low temperature in the underdoped regime. However, the observation of a quadratic temperature dependence in the electrical resistivity at low temperatures, the hallmark of a Fermi liquid regime, is still missing. Here, we report magnetoresistance measurements in the magnetic-field-induced normal state of underdoped YBa_2Cu_4O_8 which are consistent with a T^2 resistivity extending down to 1.5 K. The magnitude of the T^2 coefficient, however, is much smaller than expected for a single pocket of the mass and size observed in quantum oscillations, implying that the reconstructed Fermi surface must consist of at least one additional pocket.Comment: Main + SI : published versio

    Skutterudite Results Shed Light on Heavy Fermion Physics

    Full text link
    Only few selected examples among the great diversity of anomalous rare earth skutterudite are reviewed. Focus is first given on PrFe4P12 in comparison with URu2Si2. For PrFe4P12, great progress has been made on determining the nature of the order parameter (OP). A non magnetic order parameter with a multipolar component emerges here while for URu2Si2 the nature of the so-called hidden order remains mysterious. The two systems have several similarities in their temperature--pressure (T, P) and magnetic field--temperature (H, T) phase diagrams, in their spin dynamics, in their nesting character and in their high sensitivity to impurities. Advances on one side must stimulate new views on the other. Besides general considerations on the choice of the OP, a simple basic problem is the treatment of the Kondo coupling in a system with low charge carrier number for the cases of uncompensated and compensated semi-metal. An interesting problem is also the possible decoupling between exciton modes and itinerant carriers.Comment: 8 pages, 10 figures, proceedings of International Conference on "New Quantum Phenomena in Skutterudite and Related Systems

    Shubnikov-de Haas oscillations in YBa_2Cu_4O_8

    Full text link
    We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa2_2Cu4_4O8_8 (Y124). For field aligned along the c-axis, the frequency of the oscillations is 660±30660\pm 30 T, which corresponds to 2.4\sim 2.4 % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be 2.7±0.32.7\pm0.3 times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa2_2Cu3_3O6.5_{6.5} (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.Comment: v2: Version of paper accepted for publication in Physical Review Letters. Only minor changes to the text and reference

    Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements

    Full text link
    The Hall coefficient R_H of the cuprate superconductor YBa2Cu3Oy was measured in magnetic fields up to 60 T for a hole concentration p from 0.078 to 0.152, in the underdoped regime. In fields large enough to suppress superconductivity, R_H(T) is seen to go from positive at high temperature to negative at low temperature, for p > 0.08. This change of sign is attributed to the emergence of an electron pocket in the Fermi surface at low temperature. At p < 0.08, the normal-state R_H(T) remains positive at all temperatures, increasing monotonically as T \to 0. We attribute the change of behaviour across p = 0.08 to a Lifshitz transition, namely a change in Fermi-surface topology occurring at a critical concentration p_L = 0.08, where the electron pocket vanishes. The loss of the high-mobility electron pocket across p_L coincides with a ten-fold drop in the conductivity at low temperature, revealed in measurements of the electrical resistivity ρ\rho at high fields, showing that the so-called metal-insulator crossover of cuprates is in fact driven by a Lifshitz transition. It also coincides with a jump in the in-plane anisotropy of ρ\rho, showing that without its electron pocket the Fermi surface must have strong two-fold in-plane anisotropy. These findings are consistent with a Fermi-surface reconstruction caused by a unidirectional spin-density wave or stripe order.Comment: 16 pages, 13 figures, see associated Viewpoint: M. Vojta, Physics 4, 12 (2011

    Optical Self Energy in Graphene due to Correlations

    Full text link
    In highly correlated systems one can define an optical self energy in analogy to its quasiparticle (QP) self energy counterpart. This quantity provides useful information on the nature of the excitations involved in inelastic scattering processes. Here we calculate the self energy of the intraband optical transitions in graphene originating in the electron-electron interaction (EEI) as well as electron-phonon interaction (EPI). Although optics involves an average over all momenta (kk) of the charge carriers, the structure in the optical self energy is nevertheless found to mirror mainly that of the corresponding quasiparticles for kk equal to or near the Fermi momentum kFk_F. Consequently plasmaronic structures which are associated with momenta near the Dirac point at k=0k=0 are not important in the intraband optical response. While the structure of the electron-phonon interaction (EPI) reflects the sharp peaks of the phonon density of states, the excitation spectrum associated with the electron-electron interaction is in comparison structureless and flat and extends over an energy range which scales linearly with the value of the chemical potential. Modulations seen on the edge of the interband optical conductivity as it rises towards its universal background value are traced to structure in the quasiparticle self energies around kFk_F of the lower Dirac cone associated with the occupied states.Comment: 30 pages, 10 figure

    Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8

    Full text link
    Pulsed field measurements of the Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 are analyzed self-consistently using a simple model based on coexisting electron and hole carriers. The resultant mobilities and Hall numbers are found to vary markedly with temperature. The conductivity of the hole carriers drops by one order of magnitude below 30 K, explaining the absence of quantum oscillations from these particular pockets. Meanwhile the Hall coefficient of the electron carriers becomes strongly negative below 50 K. The overall quality of the fits not only provides strong evidence for Fermi-surface reconstruction in Y-based cuprates, it also strongly constrains the type of reconstruction that might be occurring.Comment: 5 pages, 4 figures, updated after publication in Physical Review B (Rapid Communication
    corecore