2,093 research outputs found

    Theory of elastic interaction between colloidal particles in the nematic cell in the presence of the external electric or magnetic field

    Full text link
    The Green function method developed in Ref.[S. B. Chernyshuk and B. I. Lev, Phys. Rev. E \textbf{81}, 041707 (2010)] is used to describe elastic interactions between axially symmetric colloidal particles in the nematic cell in the presence of the external electric or magnetic field. General formulas for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions in the homeotropic and planar nematic cells with parallel and perpendicular field orientations are obtained. A set of new results has been predicted: 1) \textit{Deconfinement effect} for dipole particles in the homeotropic nematic cell with negative dielectric anisotropy Δϵ<0\Delta\epsilon<0 and perpendicular to the cell electric field, when electric field is approaching it's Frederiks threshold value EEcE\Rightarrow E_{c}. This means cancellation of the confinement effect found in Ref. [M.Vilfan et al. Phys.Rev.Lett. {\bf 101}, 237801, (2008)] for dipole particles near the Frederiks transition while it remains for quadrupole particles. 2) New effect of \textit{attraction and stabilization} of the particles along the electric field parallel to the cell planes in the homeotropic nematic cell with Δϵ<0\Delta\epsilon<0 . The minimun distance between two particles depends on the strength of the field and can be ordinary for . 3) Attraction and repulsion zones for all elastic interactions are changed dramatically under the action of the external field.Comment: 15 pages, 17 figure

    Transportation Management in a Distributed Logistic Consumption System Under Uncertainty Conditions

    Get PDF
    The problem of supply management in the supplier-to-consumer logistics transport system has been formed and solved. The novelty of the formulation of the problem consists in the integrated accounting of costs in the logistic system, which takes into account at the same time the cost of transporting products from suppliers to consumers, as well as the costs for each of the consumers to store the unsold product and losses due to possible shortages. The resulting optimization problem is no longer a standard linear programming problem. In addition, the work assumes that the solution of the problem should be sought taking into account the fact that the initial data of the problem are not deterministic. The analysis of traditional methods of describing the uncertainty of the source data. It is concluded that, given the rapidly changing conditions for the implementation of the delivery process in a distributed supplier-to-consumer system, it is advisable to move from a theoretical probability representation of the source data to their description in terms of fuzzy mathematics. At the same time, in particular, the fuzzy values of the demand for the delivered product for each consumer are determined by their membership functions.Distribution of supplies in the system is described by solving a mathematical programming problem with a nonlinear objective function and a set of linear constraints of the transport type. In forming the criterion, a technology is used to transform the membership functions of fuzzy parameters of the problem to its theoretical probabilistic counterparts – density distribution of demand values. The task is reduced to finding for each consumer the value of the ordered product, minimizing the average total cost of storing the unrealized product and losses from the deficit. The initial problem is reduced to solving a set of integral equations solved, in general, numerically. It is shown that in particular, important for practice, particular cases, this solution is achieved analytically.The paper states the insufficient adequacy of the traditionally used mathematical models for describing fuzzy parameters of the problem, in particular, the demand. Statistical processing of real data on demand shows that the parameters of the membership functions of the corresponding fuzzy numbers are themselves fuzzy numbers. Acceptable mathematical models of the corresponding fuzzy numbers are formulated in terms of bifuzzy mathematics. The relations describing the membership functions of the bifuzzy numbers are given. A formula is obtained for calculating the total losses to storage and from the deficit, taking into account the bifuzzy of demand. In this case, the initial task is reduced to finding the distribution of supplies, at which the maximum value of the total losses does not exceed the permissible value

    Poynting Vector Flow in a Circular Circuit

    Full text link
    A circuit is considered in the shape of a ring, with a battery of negligible size and a wire of uniform resistance. A linear charge distribution along the wire maintains an electrostatic field and a steady current, which produces a constant magnetic field. Earlier studies of the Poynting vector and the rate of flow of energy considered only idealized geometries in which the Poynting vector was confined to the space within the circuit. But in more realistic cases the Poynting vector is nonzero outside as well as inside the circuit. An expression is obtained for the Poynting vector in terms of products of integrals, which are evaluated numerically to show the energy flow. Limiting expressions are obtained analytically. It is shown that the total power generated by the battery equals the energy flowing into the wire per unit time.Comment: 19 pages, 8 figure

    Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions

    Full text link
    We demonstrate a variety of ordered patterns, including hexagonal structures and chains, formed by colloidal particles (droplets) at the free surface of a nematic liquid crystal (LC). The surface placement introduces a new type of particle interaction as compared to particles entirely in the LC bulk. Namely, director deformations caused by the particle lead to distortions of the interface and thus to capillary attraction. The elastic-capillary coupling is strong enough to remain relevant even at the micron scale when its buoyancy-capillary counterpart becomes irrelevant.Comment: 10 pages, 3 figures, to be published in Physical Review Letter

    On the path homology of Cayley digraphs and covering digraphs

    Full text link
    We develop a theory of covering digraphs, similar to the theory of covering spaces. By applying this theory to Cayley digraphs, we build a "bridge" between GLMY-theory and group homology theory, which helps to reduce path homology calculations to group homology computations. We show some cases where this approach allows us to fully express path homology in terms of group homology. To illustrate this method, we provide a path homology computation for the Cayley digraph of the additive group of rational numbers with a generating set consisting of inverses to factorials
    corecore