14 research outputs found

    Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response

    Full text link
    © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibitedIn this paper, a model for the analysis and design of a reflective Arrayed Waveguide Grating is presented. The device consists of one half of a regular AWG where each arm waveguide in the array is terminated with a phase shifter and a Sagnac loop reflector. By individually adjusting the phase shifter and Sagnac reflectivity in each arm, additional functionality to that previously reported in the literature is attained, since this enables tailoring the spectral response of the AWG. The design and experimental demonstration of Gaussian pass-band shape devices in Silicon-on-Insulator technology are reported. Methods to obtain flattened and arbitrary spectral responses are described and supported by simulation results. (C) 2014 Optical Society of AmericaThe authors acknowledge financial support by the Spanish MINECO projects TEC2010-21337, TEC2013-42332-P; FEDER UPVOV 10-3E-492 and UPVOV 08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100. The authors thank J.S. Fandino for helpful discussions.Gargallo Jaquotot, BA.; Muñoz Muñoz, P.; Baños López, R.; Giesecke, AL.; Bolten, J.; Wahlbrink, T.; Kleinjans, H. (2014). Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response. Optics Express. 22(12):14348-14362. https://doi.org/10.1364/OE.22.014348S14348143622212Brackett, C. A. (1990). Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948-964. doi:10.1109/49.57798Kirchain, R., & Kimerling, L. (2007). A roadmap for nanophotonics. Nature Photonics, 1(6), 303-305. doi:10.1038/nphoton.2007.84Pennings, E., Khoe, G.-D., Smit, M. K., & Staring, T. (1996). Integrated-optic versus microoptic devices for fiber-optic telecommunication systems: a comparison. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 151-164. doi:10.1109/2944.577349Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370Dragone, C., Edwards, C. A., & Kistler, R. C. (1991). Integrated optics N*N multiplexer on silicon. IEEE Photonics Technology Letters, 3(10), 896-899. doi:10.1109/68.93254Lycett, R. J., Gallagher, D. F. G., & Brulis, V. J. (2013). Perfect Chirped Echelle Grating Wavelength Multiplexor: Design and Optimization. IEEE Photonics Journal, 5(2), 2400123-2400123. doi:10.1109/jphot.2013.2251874Ryckeboer, E., Gassenq, A., Muneeb, M., Hattasan, N., Pathak, S., Cerutti, L., … Roelkens, G. (2013). Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Optics Express, 21(5), 6101. doi:10.1364/oe.21.006101Pruessner, M. W., Stievater, T. H., & Rabinovich, W. S. (2007). Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors. Optics Letters, 32(5), 533. doi:10.1364/ol.32.000533De Peralta, L. G., Bernussi, A. A., Frisbie, S., Gale, R., & Temkin, H. (2003). Reflective arrayed waveguide grating multiplexer. IEEE Photonics Technology Letters, 15(10), 1398-1400. doi:10.1109/lpt.2003.818223Inoue, Y., Himeno, A., Moriwaki, K., & Kawachi, M. (1995). Silica-based arrayed-waveguide grating circuit as optical splitter/router. Electronics Letters, 31(9), 726. doi:10.1049/el:19950497Soole, J. B. D., Amersfoort, M. R., LeBlanc, H. P., Rajhel, A., Caneau, C., Youtsey, C., & Adesida, I. (1996). Compact polarisation independent InP reflective arrayed waveguide grating filter. Electronics Letters, 32(19), 1769. doi:10.1049/el:19961212Dai, D., Fu, X., Shi, Y., & He, S. (2010). Experimental demonstration of an ultracompact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors. Optics Letters, 35(15), 2594. doi:10.1364/ol.35.002594Tsai, J.-C., Huang, S., Hah, D., Toshiyoshi, H., & Wu, M. C. (2004). Open-Loop Operation of MEMS-Based<tex>1,timesN1,times N</tex>Wavelength-Selective Switch With Long-Term Stability and Repeatability. IEEE Photonics Technology Letters, 16(4), 1041-1043. doi:10.1109/lpt.2004.824652Okamoto, K., & Ishida, K. (2013). Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Optics Letters, 38(18), 3530. doi:10.1364/ol.38.003530Okamoto, K., & Yamada, H. (1995). Arrayed-waveguide grating multiplexer with flat spectral response. Optics Letters, 20(1), 43. doi:10.1364/ol.20.000043Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587Jinguji, K., Takato, N., Hida, Y., Kitoh, T., & Kawachi, M. (1996). Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations. Journal of Lightwave Technology, 14(10), 2301-2310. doi:10.1109/50.541222Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220Leuthold, J., & Joyner, C. W. (2001). Multimode interference couplers with tunable power splitting ratios. Journal of Lightwave Technology, 19(5), 700-707. doi:10.1109/50.923483Seok-Hwan Jeong, & Morito, K. (2010). Novel Optical 90^{\circ} Hybrid Consisting of a Paired Interference Based 2×\,\times\,4 MMI Coupler, a Phase Shifter and a 2×\,\times\,2 MMI Coupler. Journal of Lightwave Technology, 28(9), 1323-1331. doi:10.1109/jlt.2010.2042278Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441Munoz, P., Pastor, D., Capmany, J., Ortega, D., Pujol, A., & Bonar, J. R. (2004). AWG Model Validation Through Measurement of Fabricated Devices. Journal of Lightwave Technology, 22(12), 2763-2777. doi:10.1109/jlt.2004.833275Kleijn, E., Smit, M. K., & Leijtens, X. J. M. (2013). New Analytical Arrayed Waveguide Grating Model. Journal of Lightwave Technology, 31(20), 3309-3314. doi:10.1109/jlt.2013.2281612Bogaerts, W., Dumon, P., Thourhout, D. V., Taillaert, D., Jaenen, P., Wouters, J., … Baets, R. G. (2006). Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1394-1401. doi:10.1109/jstqe.2006.884088Pathak, S., Van Thourhout, D., & Bogaerts, W. (2013). Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Optics Letters, 38(16), 2961. doi:10.1364/ol.38.002961Van Laere, F., Claes, T., Schrauwen, J., Scheerlinck, S., Bogaerts, W., Taillaert, D., … Baets, R. (2007). Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits. IEEE Photonics Technology Letters, 19(23), 1919-1921. doi:10.1109/lpt.2007.908762Henschel, W., Georgiev, Y. M., & Kurz, H. (2003). Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(5), 2018. doi:10.1116/1.1603284LEMME, M. (2004). Highly selective HBr etch process for fabrication of Triple-Gate nano-scale SOI-MOSFETs. Microelectronic Engineering, 73-74, 346-350. doi:10.1016/s0167-9317(04)00123-6Bolten, J., Wahlbrink, T., Koo, N., Kurz, H., Stammberger, S., Hofmann, U., & Ünal, N. (2010). Improved CD control and line edge roughness in E-beam lithography through combining proximity effect correction with gray scale techniques. Microelectronic Engineering, 87(5-8), 1041-1043. doi:10.1016/j.mee.2009.11.097Sakai, A., Fukazawa, T., & Baba, T. (2004). Estimation of Polarization Crosstalk at a Micro-Bend in Si-Photonic Wire Waveguide. Journal of Lightwave Technology, 22(2), 520-525. doi:10.1109/jlt.2004.824357Kleijn, E., Williams, P. J., Whitbread, N. D., Wale, M. J., Smit, M. K., & Leijtens, X. J. M. (2012). Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation. Optics Express, 20(20), 22660. doi:10.1364/oe.20.022660Pathak, S., Vanslembrouck, M., Dumon, P., Van Thourhout, D., Verheyen, P., Lepage, G., … Bogaerts, W. (2014). Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings. IEEE Photonics Technology Letters, 26(7), 718-721. doi:10.1109/lpt.2014.2303793Okamoto, K., & Sugita, A. (1996). Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns. Electronics Letters, 32(18), 1661. doi:10.1049/el:19961108Munoz, P., Pastor, D., & Capmany, J. (2001). Analysis and design of arrayed waveguide gratings with MMI couplers. Optics Express, 9(7), 328. doi:10.1364/oe.9.000328Doerr, C. R., Cappuzzo, M. A., Chen, E. Y., Wong-Foy, A., Gomez, L. T., & Buhl, L. L. (2006). Wideband Arrayed Waveguide Grating With Three Low-Loss Maxima Per Passband. IEEE Photonics Technology Letters, 18(21), 2308-2310. doi:10.1109/lpt.2006.885208Leaird, D. E., Weiner, A. M., Kamei, S., Ishii, M., Sugita, A., & Okamoto, K. (2002). Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings. IEEE Photonics Technology Letters, 14(6), 816-818. doi:10.1109/lpt.2002.100310

    Stand des Umwelt- und Arbeitsschutzes bei der Verchromung von Metall und Kunststoff

    No full text
    Die Verchromung von Metall und Kunststoff ist ein kritischer Produktionsprozess, der sich durch einige Neuregelungen aktuell im Umbruch befindet. Zum einen wird giftiges und kanzerogenes sechswertiges Chrom in Form der Chromsäure eingesetzt. Sechswertiges Chrom darf künftig nur noch mit besonderer Autorisierung nach REACH verwendet werden. Zum anderen werden oft persistente per- oder polyfluorierte Verbindungen eingesetzt. Diese Stoffe sind für den Arbeits- und Umweltschutz von besonderer Bedeutung
    corecore