97 research outputs found

    Unc5B Interacts with FLRT3 and Rnd1 to Modulate Cell Adhesion in Xenopus Embryos

    Get PDF
    The FLRT family of transmembrane proteins has been implicated in the regulation of FGF signalling, neurite outgrowth, homotypic cell sorting and cadherin-mediated adhesion. In an expression screen we identified the Netrin receptors Unc5B and Unc5D as high-affinity FLRT3 interactors. Upon overexpression, Unc5B phenocopies FLRT3 and both proteins synergize in inducing cell deadhesion in Xenopus embryos. Morpholino knock-downs of Unc5B and FLRT3 synergistically affect Xenopus development and induce morphogenetic defects. The small GTPase Rnd1, which transmits FLRT3 deadhesion activity, physically and functionally interacts with Unc5B, and mediates its effect on cell adhesion. The results suggest that FLRT3, Unc5B and Rnd1 proteins interact to modulate cell adhesion in early Xenopus development

    Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse

    Get PDF
    Bone morphogenetic proteins (BMPs) are considered important regulators of neural development. However, results mainly from a wide set of in vitro gain-of-function experiments are conflicting since these show that BMPs can act either as inhibitors or promoters of neurogenesis. Here, we report a specific and non-redundant role for BMP7 in cortical neurogenesis in vivo using knockout mice. Bmp7 is produced in regions adjacent to the developing cortex; the hem, meninges, and choroid plexus, and can be detected in the cerebrospinal fluid. Bmp7 deletion results in reduced cortical thickening, impaired neurogenesis, and loss of radial glia attachment to the meninges. Subsequent in vitro analyses of E14.5 cortical cells revealed that lack of Bmp7 affects neural progenitor cells, evidenced by their reduced proliferation, survival and self-renewal capacity. Addition of BMP7 was able to rescue these proliferation and survival defects. In addition, at the developmental stage E14.5 Bmp7 was also required to maintain Ngn2 expression in the subventricular zone. These data demonstrate a novel role for Bmp7 in the embryonic mouse cortex: Bmp7 nurtures radial glia cells and regulates fundamental properties of neural progenitor cells that subsequently affect Ngn2-dependent neurogenesis

    Neuregulin-1 Regulates Cell Adhesion via an ErbB2/Phosphoinositide-3 Kinase/Akt-Dependent Pathway: Potential Implications for Schizophrenia and Cancer

    Get PDF
    Neuregulin-1 (NRG1) is a putative schizophrenia susceptibility gene involved extensively in central nervous system development as well as cancer invasion and metastasis. Using a B lymphoblast cell model, we previously demonstrated impairment in NRG1alpha-mediated migration in cells derived from patients with schizophrenia as well as effects of risk alleles in NRG1 and catechol-O-methyltransferase (COMT), a second gene implicated both in schizophrenia susceptibility and in cancer.Here, we examine cell adhesion, an essential component process of cell motility, using an integrin-mediated cell adhesion assay based on an interaction between ICAM-1 and the CD11a/CD18 integrin heterodimer expressed on lymphoblasts. In our assay, NRG1alpha induces lymphoblasts to assume varying levels of adhesion characterized by time-dependent fluctuations in the firmness of attachment. The maximum range of variation in adhesion over sixty minutes correlates strongly with NRG1alpha-induced migration (r(2) = 0.61). NRG1alpha-induced adhesion variation is blocked by erbB2, PI3K, and Akt inhibitors, but not by PLC, ROCK, MLCK, or MEK inhibitors, implicating the erbB2/PI3K/Akt1 signaling pathway in NRG1-stimulated, integrin-mediated cell adhesion. In cell lines from 20 patients with schizophrenia and 20 normal controls, cells from patients show a significant deficiency in the range of NRG1alpha-induced adhesion (p = 0.0002). In contrast, the response of patient-derived cells to phorbol myristate acetate is unimpaired. The COMT Val108/158Met genotype demonstrates a strong trend towards predicting the range of the NRG1alpha-induced adhesion response with risk homozygotes having decreased variation in cell adhesion even in normal subjects (p = 0.063).Our findings suggest that a mechanism of the NRG1 genetic association with schizophrenia may involve the molecular biology of cell adhesion

    Systematic Identification of Genes that Regulate Neuronal Wiring in the Drosophila Visual System

    Get PDF
    Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring

    ER stress arm XBP1s plays a pivotal role in proteasome inhibition-induced bone formation

    Get PDF
    Background Bone destruction is a hallmark of multiple myeloma (MM). It has been reported that proteasome inhibitors (PIs) can reduce bone resorption and increase bone formation in MM patients, but the underlying mechanisms remain unclear. Methods Mesenchymal stem cells (MSCs) were treated with various doses of PIs, and the effects of bortezomib or carfilzomib on endoplasmic reticulum (ER) stress signaling pathways were analyzed by western blotting and real-time PCR. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to determine the osteogenic differentiation in vitro. Specific inhibitors targeting different ER stress signaling and a Tet-on inducible overexpressing system were used to validate the roles of key ER stress components in regulating osteogenic differentiation of MSCs. Chromatin immunoprecipitation (ChIP) assay was used to evaluate transcription factor-promoter interaction. MicroCT was applied to measure the microarchitecture of bone in model mice in vivo. Results We found that both PERK-ATF4 and IRE1α-XBP1s ER stress branches are activated during PI-induced osteogenic differentiation. Inhibition of ATF4 or XBP1s signaling can significantly impair PI-induced osteogenic differentiation. Furthermore, we demonstrated that XBP1s can transcriptionally upregulate ATF4 expression and overexpressing XBP1s can induce the expression of ATF4 and other osteogenic differentiation-related genes and therefore drive osteoblast differentiation. MicroCT analysis further demonstrated that inhibition of XBP1s can strikingly abolish bortezomib-induced bone formation in mouse. Conclusions These results demonstrated that XBP1s is a master regulator of PI-induced osteoblast differentiation. Activation of IRE1α-XBP1s ER stress signaling can promote osteogenesis, thus providing a novel strategy for the treatment of myeloma bone disease

    Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways

    No full text
    This article is hosted on a website external to the CBCRA Open Access Archive. Selecting “View/Open” below will launch the full-text article in another browser window
    corecore