12,422 research outputs found

    An experimental study on a motion sensing system for sports training

    Get PDF
    In sports science, motion data collected from athletes is used to derive key performance characteristics, such as stride length and stride frequency, that are vital coaching support information. The sensors for use must be more accurate, must capture more vigorous events, and have strict weight and size requirements, since they must not themselves affect performance. These requirements mean each wireless sensor device is necessarily resource poor and yet must be capable of communicating a considerable amount of data, contending for the bandwidth with other sensors on the body. This paper analyses the results of a set of network traffic experiments that were designed to investigate the suitability of conventional wireless motion sensing system design � which generally assumes in-network processing - as an efficient and scalable design for use in sports training

    Chiral symmetry breaking in a uniform external magnetic field II. Symmetry restoration at high temperatures and chemical potentials

    Full text link
    Chiral symmetry is dynamically broken in quenched, ladder QED at weak gauge couplings when an external magnetic field is present. In this paper, we show that chiral symmetry is restored above a critical chemical potential and the corresponding phase transition is of first order. In contrast, the chiral symmetry restoration at high temperatures (and at zero chemical potential) is a second order phase transition.Comment: Latex; 12 pages; 8 postscript figures include

    A comparison theorem for permanents and a proof of a conjecture on (t, m)-families

    Get PDF
    AbstractA comparison theorem for permanents is established and it is used to prove a conjecture on (t, m)-families

    Ordering dynamics of the driven lattice gas model

    Full text link
    The evolution of a two-dimensional driven lattice-gas model is studied on an L_x X L_y lattice. Scaling arguments and extensive numerical simulations are used to show that starting from random initial configuration the model evolves via two stages: (a) an early stage in which alternating stripes of particles and vacancies are formed along the direction y of the driving field, and (b) a stripe coarsening stage, in which the number of stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus, depending on this parameter, the resulting state could be either single or multi striped. In the second, stripe coarsening stage, the coarsening time is found to be proportional to L_y, becoming infinitely long in the thermodynamic limit. This implies that the multi striped state is thermodynamically stable. The results put previous studies of the model in a more general framework

    Random access quantum information processors

    Full text link
    Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21 page

    Electrodynamics of Media

    Get PDF
    Contains reports on three research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346
    corecore