A Comparison Theorem for Permanents and a Proof of a Conjecture on (t, m)-Families*

Joseph Y.-T. Leung
Computer Science Program, University of Texas at Dallas, Richardson, Texas 75083

AND
W.-D. Wei
Department of Mathematics, Sichuan University, Chengdu, 610064 China and Computer Science Program, University of Texas at Dallas, Richardson, Texas 75083

Communicated by the Managing Editors
Reccived Junc 30, 1990

Abstract

A comparison theorem for permanents is established and it is used to prove a conjecture on (t, m)-families. 1992 Academic Press, Inc.

1. Introduction

Let $F_{1}, F_{2}, \ldots, F_{m}$ be m sets and $S=\bigcup_{i=1}^{m} F_{i} . \Lambda$ sequence $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ of m distinct elements of S is said to form a system of distinct representatives (SDR) of the family $F=\left(F_{1}, F_{2}, \ldots, F_{m}\right)$ if $f_{i} \in F_{i}$ for each $1 \leqslant i \leqslant m$. Two SDRs are distinct if they are different as sequences. Let $N(F)$ denote the number of distinct SDRs of the family F. The problem of finding the value of and the bounds for $N(F)$ has been investigated extensively in the literature. For details, see, for example, [1, 3-6].

Recently, G. J. Chang [2] considered the following problem. Let t be a nonnegative integer. A family $F=\left(F_{1}, F_{2}, \ldots, F_{m}\right)$ is called a (t, m)-family if

$$
\left|\bigcup_{i \in I} F_{i}\right| \geqslant|I|+t \quad \text { for any nonempty subset } I \subseteq[1, m]
$$

[^0]The problem proposed by Chang [2] is: What is the value of

$$
M(t, m)=\min \{N(F) \mid F \text { is a }(t, m) \text {-family }\} ?
$$

It is easy to see that for the family $F_{l, m}^{*}=\left(F_{1}^{*}, F_{2}^{*}, \ldots, F_{m}^{*}\right)$ with

$$
F_{i}^{*}=\{i, m+1, m+2, \ldots, m+t\}, \quad 1 \leqslant i \leqslant m,
$$

the value of $N\left(F_{t, m}^{*}\right)$ is

$$
U(t, m)=\sum_{j=0}^{\min (t, m)} j!\binom{t}{j}\binom{m}{j} .
$$

He [2] proved that

$$
M(t, m)=U(t, m) \quad \text { for } \quad t=0,1, \text { and } 2
$$

and that $F_{l, m}^{*}$ is the only (t, m)-family with

$$
N(F)=M(t, m) \quad \text { for } \quad t=2 .
$$

He [2] also determined all the (t, m)-families with $N(F)=M(t, m)$ for $t=0$ and 1. Based on these results, he conjectured that

$$
\begin{equation*}
M(t, m)=U(t, m) \quad \text { for } \quad t \geqslant 3, \tag{1.1}
\end{equation*}
$$

and that $F_{t, m}^{*}$ is the only (t, m)-family with

$$
\begin{equation*}
N(F)=M(t, m) \quad \text { for all } \quad t \geqslant 3 . \tag{1.2}
\end{equation*}
$$

In this paper we first prove a comparison theorem for permanents of matrices in Section 2, and then use the result to prove the conjecture in Section 3.

2. A Comparison Theorem for Permanents

Let $B=\left(b_{i, j}\right)$ be an $m \times n$ matrix over a ring R. We define the permanent of B as

$$
\begin{equation*}
\operatorname{per}(B)=\sum_{j_{1} j_{2} \cdots j_{m}} \prod_{i=1}^{m} b_{i, j_{i}} \tag{2.1}
\end{equation*}
$$

where $j_{1} j_{2} \cdots j_{m}$ is an m-permutation of $[1, n]$. When $m>n$, the sum on the right-hand side of (2.1) is 0 .

Let $S=\bigcup_{i=1}^{m} F_{i}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Let $A=\left(a_{i, j}\right)$ be the incidence matrix of the family $F=\left(F_{1}, F_{2}, \ldots, F_{m}\right)$; i.e.,

$$
a_{i, j}= \begin{cases}1 & \text { if } s_{j} \in F_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

Then $N(F)=\operatorname{per}(A)$.
We write A as

$$
A=\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{m}
\end{array}\right)
$$

where A_{i} is the i th row vector of A. For a vector V, we define

$$
\|V\|=\text { the number of nonzero components in } V \text {. }
$$

Then a family F is a (t, m)-family iff its incidence matrix A satisfies

$$
\begin{equation*}
\left\|\sum_{i \in I} A_{i}\right\| \geqslant|I|+t \quad \text { for any nonempty subset } I \subseteq[1, m] . \tag{2.2}
\end{equation*}
$$

A $(0,1)$-matrix with this property will be called a (t, m)-matrix. Then we have

$$
\begin{equation*}
M(t, m)=\min \{\operatorname{per}(A) \mid A \text { is a }(t, m) \text {-matrix }\}, \tag{2.3}
\end{equation*}
$$

and the conjecture becomes
Conjecture M.

$$
\begin{equation*}
M(t, m)=U(t, m) \quad \text { for all } \quad t \geqslant 3, \tag{2.4}
\end{equation*}
$$

and the matrices that achieve the minimal value in (2.3) are only those that can be obtained by row and column permutations of the following matrix A^{*} :

$$
A^{*}=\left(\begin{array}{ccccc}
1 & & & \bigcirc & \left.\underbrace{\left\lvert\, \begin{array}{c}
1 \cdots 1 \\
1 \cdots 1 \\
\cdots \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\cdots
\end{array}\right.}_{m} \begin{array}{lll}
\cdots & & \\
1 \cdots 1 \\
1 \cdots 1
\end{array} \right\rvert\, \\
r
\end{array}\right)
$$

For convenience, we adopt some notation from Minc [6]. Let

$$
\begin{aligned}
& \Gamma_{r, n}=\left\{w=\left(w_{1}, w_{2}, \ldots, w_{r}\right) \mid 1 \leqslant w_{i} \leqslant n \text { for all } 1 \leqslant i \leqslant r\right\}, \\
& Q_{r, n}=\left\{\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in \Gamma_{r, n} \mid 1 \leqslant w_{1}<w_{2}<\cdots<w_{r} \leqslant n\right\} .
\end{aligned}
$$

Let B be an $m \times n$ matrix, $\alpha \in Q_{h, m}$ and $\beta \in Q_{k, n}$. Let
$B[\alpha \mid \beta]$ denote the $h \times k$ submatrix of B formed by the rows α and the columns β,
$B(\alpha \mid \beta)$ denote the $(m-h) \times(n-k)$ submatrix of B complimentary to $B[\alpha \mid \beta]$,
$B[\alpha \mid \beta)$ denote the $h \times(n-k)$ submatrix of B formed by the rows α and the columns that are not in β,
$B(\alpha \mid \beta]$ denote the $(m-h) \times k$ submatrix of B formed by the columns β and the rows that are not in α,

$$
\begin{aligned}
& B(-\mid \beta]=B[[1, m] \mid \beta], B[\alpha \mid-)=B[\alpha \mid[1, n]], \\
& B(-\mid \beta)=B[[1, m] \mid \beta), B(\alpha \mid-)=B(\alpha \mid[1, n]] .
\end{aligned}
$$

The foilowing lemma is needed for the proof of Theorem 1 ; its proof can be found in [6].

Lemma 1. If B is an $m \times m$ matrix, $m \geqslant 2$ and $\beta \in Q_{r, m}$, then

$$
\operatorname{per}(B)=\sum_{\alpha \in Q_{r, m}} \operatorname{per}(B[\alpha \mid \beta]) \times \operatorname{per}(B(\alpha \mid \beta)) .
$$

In particular, for any $j \in[1, m]$,

$$
\operatorname{per}(B)=\sum_{i=1}^{m} b_{i, j} \times \operatorname{per}(B(i \mid j)) .
$$

Our comparison theorem for permanents can be stated as follows.
Theorem 1. Let $B=\left(b_{i, j}\right)$ be an $m \times n(0,1)$-matrix, $m \leqslant n$, and p and q be given, $1 \leqslant p<q \leqslant n$. Suppose $\hat{B}=\left(\hat{b}_{i, j}\right)$ is obtained from B by changing the p th and q th columns as follows:

$$
\left(\hat{b}_{i, p}, \hat{b}_{i, q}\right)= \begin{cases}(1,0) & \text { if }\left(b_{i, p}, b_{i, q}\right)=(0,1), \tag{2.6}\\ \left(b_{i, p}, b_{i, q}\right) & \text { otherwise. }\end{cases}
$$

Then

$$
\begin{equation*}
\operatorname{per}(B) \geqslant \operatorname{per}(\hat{B}) . \tag{2.7}
\end{equation*}
$$

And the strict inequality in (2.7) holds iff there are two indices i and j such that

$$
\left(\begin{array}{ll}
b_{i, p} & b_{i, 4} \tag{2.8}\\
b_{j, p} & b_{j, 4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\begin{equation*}
\operatorname{per}(B(i, j \mid p, q)) \neq 0 \tag{2.9}
\end{equation*}
$$

Note. This theorem is similar to the lemma proved by Brualdi et al. [1]. However, their lemma requires the following condition to hold: Column q of matrix B dominates column p, i.e.,

$$
b_{i q} \geqslant b_{i p} \quad(1 \leqslant i \leqslant m)
$$

and

$$
\sum_{i=1}^{m}\left(b_{i q}-b_{i p}\right) \geqslant 2 .
$$

Our theorem does not require the above condition to hold.
Proof. Since the permanent of a matrix is invariant under row and column permutations, we may assume, without loss of generality, that $(p, q)=(1,2)$. Let $I \subseteq[1, m]$ be the subset of indices such that $\left(b_{i, 1}, b_{i, 2}\right)=(0,1)$ for each $i \in I$. If $I=\varnothing$, the conclusion is trivial. Thus, we may assume that $|I| \geqslant 1$.

By definition, we have

$$
\begin{equation*}
\operatorname{per}(\hat{B})=\sum_{w \in Q_{m . n}} \operatorname{per}(\hat{B}(-\mid w]) \tag{2.10}
\end{equation*}
$$

All the w 's in $Q_{m . n}$ can be divided into four types and so can all the submatrices in $\left\{\hat{B}(-\mid w] \mid w \in Q_{m, n}\right\}$:

$$
\begin{aligned}
& U_{1}=\left\{\hat{B}(-\mid w] \mid w \in Q_{m, n} \text { and } w_{1} \geqslant 3\right\}, \\
& U_{2}=\left\{\hat{B}(-\mid w] \mid w \in Q_{m, n} \text { and } w_{1}=2\right\}, \\
& U_{3}-\left\{\hat{B}(-\mid w] \mid w \in Q_{m, n}, w_{1}=1 \text { and } w_{2} \geqslant 3\right\}, \\
& U_{4}=\left\{\hat{B}(-\mid w] \mid w \in Q_{m, n}, w_{1}=1 \text { and } w_{2}=2\right\} .
\end{aligned}
$$

Clearly, if $\hat{B}(-\mid w] \in U_{1}$, then

$$
\begin{equation*}
\operatorname{per}(\hat{B}(-\mid w])=\operatorname{per}(B(-\mid w]) \tag{2.11}
\end{equation*}
$$

If $\hat{B}(-\mid w] \in U_{2}$, then by Lemma 1 ,

$$
\begin{aligned}
\operatorname{per}(\hat{B}(-\mid w]) & =\sum_{i=1}^{m} \hat{b}_{i, 2} \times \operatorname{per}\left(\hat{B}\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& =\sum_{i \in Y} b_{i, 2} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)
\end{aligned}
$$

where $\ddot{I}=[1, m]-I$. For $\hat{B}(-\mid w] \in U_{3}$, we have

$$
\begin{align*}
\operatorname{per}(\hat{B}(-\mid w])= & \sum_{i=1}^{m} \hat{b}_{i, 1} \times \operatorname{per}\left(\hat{B}\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
= & \sum_{i \in I} b_{i, 2} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& +\sum_{i \in I} b_{i, 1} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) . \tag{2.13}
\end{align*}
$$

For $\hat{B}(-\mid w] \in U_{4}$, we have

$$
\begin{align*}
\operatorname{per}(\hat{B}(-\mid w])= & \sum_{i<j} \operatorname{per}\left(\left(\begin{array}{cc}
\hat{b}_{i, 1} & \hat{b}_{i, 2} \\
\hat{b}_{j, 1} & \hat{b}_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(\hat{B}\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
= & \sum_{i<j ; i, j \in I} \operatorname{per}\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i \in I, j \in I} \operatorname{per}\left(\left(\begin{array}{cc}
1 & 0 \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i \in i, j \in I} \operatorname{per}\left(\left(\begin{array}{cc}
b_{i, 1} & b_{i, 2} \\
1 & 0
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i, j \in I} \operatorname{per}\left(\left(\begin{array}{cc}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
= & 0 \\
& +\sum_{i<j: i \in I, j \in Y} b_{j, 2} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j, i \in I, j \in I} b_{i, 2} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i, j \in i} \operatorname{per}\left(\left(\begin{array}{cc}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
= & \sum_{j \in I, i \in Y} b_{i, 2} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j ; i, j \in Y} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) . \tag{2.14}
\end{align*}
$$

Thus, (2.10)-(2.14) give

$$
\begin{align*}
\operatorname{per}(\hat{B})= & \sum_{3 \leqslant w_{1}<\cdots<w_{m} \leqslant n} \operatorname{per}\left(B\left(-\mid w_{1}, \ldots, w_{m}\right]\right) \\
& +\sum_{3 \leqslant w_{2}<\cdots<w_{m} \leqslant n}\left(\sum_{i \in I} \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)\right. \\
& \left.+\sum_{i \in I}\left(b_{i, 1}+b_{i, 2}\right) \times \operatorname{pcr}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)\right) \\
& +\sum_{3 \leqslant w_{3}<\cdots<w_{m} \leqslant n}\left(\sum_{j \in I, i \in I} b_{i, 2} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right)\right. \\
& \left.+\sum_{i<j ; i, j \in \tilde{I}} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right)\right) \tag{2.15}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{per}(B)= & \sum_{w \in Q_{m, n}} \operatorname{per}(B(-\mid w]) \\
= & \sum_{3 \leqslant w_{1}<\cdots<w_{m} \leqslant n} \operatorname{per}\left(B\left(-\mid w_{1}, \ldots, w_{m}\right]\right) \\
& +\sum_{3 \leqslant w_{2}<\cdots<w_{m} \leqslant n} \sum_{i=1}^{m} b_{i, 2} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& +\sum_{3 \leqslant w_{2}<\cdots<w_{m} \leqslant n} \sum_{i=1}^{m} b_{i, 1} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& +\sum_{3 \leqslant w_{3}<\cdots<w_{m} \leqslant n} \sum_{i<j} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{i=1}^{m} b_{i, 2} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& \quad=\sum_{i \in I} 1 \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)+\sum_{i \in I} b_{i, 2} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& \sum_{i=1}^{m} b_{i, 1} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right) \\
& \quad=\sum_{i \in I} 0 \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)+\sum_{i \in I} b_{i, 1} \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i<j} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& =\sum_{i<j: i, j \in i} \operatorname{per}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i \in f, j \in i} \operatorname{per}\left(\left(\begin{array}{cc}
0 & 1 \\
b_{j, i} & b_{j .2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j: i \in I, j \in I} \operatorname{per}\left(\left(\begin{array}{cc}
b_{i, 1} & b_{i, 2} \\
0 & 1
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j ; i, j \in I} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i .2} \\
b_{j .1} & b_{j .2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& =\sum_{i<j: j \in I_{1, j \in j}} b_{j, 1} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j ; i \in Z_{j}, j \in 1} b_{i, 1} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j ; i, j \in \gamma} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i .2} \\
b_{j .1} & b_{j .2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& =\sum_{j \in l, i \in I} b_{i, 1} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& +\sum_{i<j ; i, j \in j} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 3} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right),
\end{aligned}
$$

we have

$$
\begin{align*}
\operatorname{per}(B)= & \sum_{3 \leqslant w_{1}<\cdots<w_{m} \leqslant n} \operatorname{per}\left(B\left(-\mid w_{1}, \ldots, w_{m}\right]\right) \\
& +\sum_{3 \leqslant w_{2}<\ldots<w_{m} \leqslant n}\left(\sum_{i \in I} \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)\right. \\
& \left.+\sum_{i \in I}\left(b_{i, 1}+b_{i, 2}\right) \times \operatorname{per}\left(B\left(i \mid w_{2}, \ldots, w_{m}\right]\right)\right) \\
& +\sum_{3 \leqslant w_{3}<\cdots<w_{m} \leqslant n}\left(\sum_{j \in l, i \in I} b_{i, 1} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right)\right. \\
& \left.+\sum_{i<j ; i, j \in \dot{I}} \operatorname{per}\left(\left(\begin{array}{ll}
b_{i, 1} & b_{i, 2} \\
b_{j, 1} & b_{j, 2}
\end{array}\right)\right) \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right)\right) \tag{2.16}
\end{align*}
$$

Note that when $i \in \ddot{I}, b_{i, 2}=1$ implies $b_{i, 1}=1$. Thus, we have

$$
\begin{align*}
& \quad \sum_{3 \leqslant w_{3}<\ldots<w_{m} \leqslant n} \sum_{j \in l, i \in I} b_{i, 2} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \\
& \quad \leqslant \sum_{3 \leqslant w_{3}<\cdots<w_{m} \leqslant n} \sum_{j \in l, i \in I} b_{i, 1} \times \operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) . \tag{2.17}
\end{align*}
$$

Combining (2.15)-(2.17), we obtain

$$
\begin{equation*}
\operatorname{per}(\hat{B}) \leqslant \operatorname{per}(B) \tag{2.18}
\end{equation*}
$$

and the strict inequality in (2.18) holds iff the strict inequality in (2.17) holds. The latter is equivalent to the existence of indices w_{3}, \ldots, w_{m}, i and j such that $i \in \ddot{I}, j \in I,\left(b_{i .1}, b_{i .2}\right)=(1,0), 3 \leqslant w_{3}<\cdots<w_{m} \leqslant n$, and $\operatorname{per}\left(B\left(i, j \mid w_{3}, \ldots, w_{m}\right]\right) \neq 0$. This is just the same as (2.8) and (2.9) with $p=1$ and $q=2$. This completes the proof.

3. Proof of Conjecture M

In this section we establish the validity of Conjecture M. We first prove the following lemma.

Lemma 2. Let $t \geqslant 1$,
$M^{\prime}(t, m)$
$=\min \left\{\operatorname{per}(A) \mid A\right.$ is a (t, m)-matrix with $\left\|A_{i}\right\|=t+1$ for all $\left.1 \leqslant i \leqslant m\right\}$,
$M^{\prime \prime}(t, m)$
$=\min \left\{\operatorname{per}(A) \mid A\right.$ is a (t, m)-matrix with $\left\|A_{i}\right\| \geqslant t+2$ for some $\left.1 \leqslant i \leqslant m\right\}$.
Then we have

$$
\begin{equation*}
M^{\prime \prime}(t, m)>M^{\prime}(t, m) . \tag{3.1}
\end{equation*}
$$

Proof. Let A be a (t, m)-matrix with $\left\|A_{i}\right\| \geqslant t+2$ for some $1 \leqslant i \leqslant m$. Since A is a (t, m)-matrix, A must satisfy (2.2). Thus, by permuting rows and columns if necessary, A can be reduced to the following form \hat{A} with $\left\|\hat{A}_{1}\right\| \geqslant t+2$:
where ${ }^{*}$ stands for 0 or 1 .
Let $c=\left\|\hat{A}_{1}\right\|-(t+1)$. Since $\left\|\hat{A}_{1}\right\| \geqslant t+2$, we have $c \geqslant 1$. Furthermore,
there are exactly c ones in the submatrix (B, C) of \hat{A}. We have two cases to consider, depending on whether there is a one in C or not.

Case I. There is a one in C. In this case let
and

$$
Y=(\underbrace{D}_{t+1} \left\lvert\, \begin{array}{cccc}
1 & * & \cdots & * \\
* & 1 & & * \\
& & \ddots & \\
& * & \cdots & \\
m-1
\end{array}\right.) \underbrace{}_{n-m-t-1} 0 \quad \underbrace{})\} m-1
$$

If we expand $\operatorname{per}(\hat{A})$ by its first row, we see that

$$
\begin{aligned}
\operatorname{per}(\hat{A}) & \geqslant \operatorname{pcr}(X)+\operatorname{pcr}(Y) \\
& \geqslant \operatorname{per}(X)+1 \\
& \geqslant \operatorname{per}(X) .
\end{aligned}
$$

Note that X is also a (t, m)-matrix with $\left\|X_{1}\right\|=t+1$ and $\left\|X_{i}\right\|=\left\|\hat{A}_{i}\right\|$ for all $2 \leqslant i \leqslant m$.

Case II. There is no one in C. In this case there are exactly c ones in B. By permuting rows and columns if necessary, we may assume that \hat{A} is of the form

where $*$ stands for 0 or 1 . Since

$$
\left\|\hat{A}_{2}+\cdots+\hat{A}_{c+1}\right\| \geqslant t+c \geqslant 1+c,
$$

there is at least one 1 in F, G, or H. Let there be a one in the i th row of F, G, or H. We have $1 \leqslant i \leqslant c$. Now, let

and

where Z is the matrix obtained by deleting the first row and the $(t+1+i)$ th column of \hat{A}. If we expand \hat{A} by its first row, we see that

$$
\begin{aligned}
\operatorname{per}(\hat{A}) & \geqslant \operatorname{per}(W)+\operatorname{per}(Z) \\
& \geqslant \operatorname{per}(W)+1 \\
& >\operatorname{per}(W)
\end{aligned}
$$

Note that W is also a (t, m)-matrix with $\left\|W_{1}\right\|=t+1$ and $\left\|W_{i}\right\|=\left\|\hat{A}_{i}\right\|$ for all $2 \leqslant i \leqslant m$.

Repeating the above argument, we obtain (3.1). This completes the proof.
We are now ready to prove the following theorem that covers both Theorem 3 of Chang [2] and Conjecture M.

Theorem 2. $M(t, m)=U(t, m)$ for all $t>1$, and the matrices that achieve the minimal value in (2.3) are only those that can be obtained by row and column permutations of the matrix A^{*} shown in (2.5).

Proof. By Lemma 2, it suffices to prove that $M^{\prime}(t, m)=U(t, m)$. Let $A=\left(a_{i, j}\right)$ be a (t, m)-matrix with exactly $t+1$ ones in each row. Since A is a (t, m)-matrix, A must satisfy (2.2). Thus, by permuting rows and columns if necessary, A can be reduced to the form
where $*$ stands for 0 or 1 .
By induction on m we now prove the following claim: By applying the procedure stated in Theorem 1 and by permuting rows and columns, we can transform A into A^{*},

$$
\begin{equation*}
A^{*}=\left(I_{m} J_{m \times 1} O_{m \times(n-m-1)}\right), \tag{3.2}
\end{equation*}
$$

where I_{m} is the identity matrix of order $m, J_{m \times t}$ is the $m \times t$ matrix of ones, and $O_{m \times(n-m-1)}$ is the $m \times(n-m-t)$ zero matrix. Note that A^{*} is exactly the same matrix as in (2.5).

If $a_{i, m}=1$ for some $1 \leqslant i \leqslant m-1$, then there must be a $j, m+1 \leqslant$ $j \leqslant m+t$, such that $a_{i . j}=0$. By applying the procedure in Theorem 1, A can be transformed into

$$
\left(\begin{array}{rlll|l|l}
1 & * & & 0 & & \\
& \cdot & & & \cdot & \\
* & \cdot & & \cdot & * & * \\
& & \cdot & & \cdot & \\
0 & \cdots & 1 & 0 & 1 & \\
0 & \underbrace{1 \cdots 1}_{1} & \underbrace{}_{n-m-1}
\end{array}\right)
$$

By permuting its columns, the above matrix can be transformed into

$$
A^{\prime}=\left(\begin{array}{cc|c|r}
1 & * & & 0 \\
* & \ddots & * & * \\
& & & \\
& 1 \\
0 \cdots 0 & \underbrace{1 \cdots 1}_{m-1} & \underbrace{}_{n-m-1} & \begin{array}{r}
1 \\
0 \\
1
\end{array}
\end{array}\right) .
$$

Let $B=A^{\prime}(m \mid n)$. We have

$$
\begin{aligned}
& \left\|B_{i}\right\|=t+1 \quad \text { for each } 1 \leqslant i \leqslant m-1 \\
& \left\|\sum_{i \in I} B_{i}\right\| \geqslant\|I\|+t \quad \text { for each nonempty subset } I \subseteq[1, m-1]
\end{aligned}
$$

By the induction hypothesis, B can be transformed into

$$
\left.B^{\prime}=\left(I_{m-1} J_{(m} \quad 1\right) \times, O_{(m-1) \times(n-m-l)}\right)
$$

Corresponding, A^{\prime} is transformed into

$$
\hat{A}=(\begin{array}{ccc|c|c}
1 & 0 & & 1 & \cdot \\
0 & \cdot & 1 & & 0 \\
& \cdot & 1 \\
\dot{a}_{m, 1} \cdot \hat{a}_{m, m-1}
\end{array} \left\lvert\, \underbrace{}_{m-1} \begin{array}{cccc}
\hat{a}_{m, m} \cdot \hat{a}_{m, m-1+1} & 0 & \underbrace{}_{n-m-1} & \hat{a}_{m, m+t} \cdot \hat{a}_{n-1} \\
0 \\
1
\end{array}\right.) .
$$

Since $\left\|\hat{A}_{m}\right\|=t+1$, the number of ones in $\left\{\hat{a}_{m, 1}, \ldots, \hat{a}_{m, m-1}, \hat{a}_{m . m+1}, \ldots\right.$, $\left.\hat{a}_{m, n-1}\right\}$ is exactly the same as the number of zeros in $\left\{\hat{a}_{m, n}, \ldots, \hat{a}_{m, m-1+t}\right\}$. Thus, by applying the procedure in Theorem $1, \hat{A}$ can be transformed into

$$
\left(\begin{array}{ccc|c|c|c}
1 & 0 & 0 & 1 \cdots 1 & & 0 \\
0 & \ddots & & & 0 & \\
& & & & & \\
& & 1 & 1 \cdots 1 & & \underbrace{}_{m-1} \\
0 \cdots 1 & 1 \cdots 1 & & \\
0 \\
1
\end{array}\right)
$$

By permuting its columns, the above matrix can finally be transformed into A^{*}. Hence we have $M^{\prime}(t, m)=U(t, m)$.

To prove the second part of the theorem, we will show that if A cannot be transformed into A^{*} by row and column permutations only, then $\operatorname{per}(A)>\operatorname{per}\left(A^{*}\right)$. Suppose that the procedure in Theorem 1 must be used in the above transformation from A to A^{*}. The last time the procedure in Theorem 1 is used, A must have been transformed into one of the following two forms (up to an isomorphism of row and column permutations):

$$
A_{0}=\left(\begin{array}{cc|c|c|c|c}
1 & 0 & & 1 \cdots 1 & \tag{3.3}\\
& \ddots & D & E & & 0 \\
0 & 1 & & & 1 \cdots 1 \\
\hline \underbrace{0 \cdots 0}_{m-1} & 1 & 1 & \underbrace{1 \cdots 1}_{1} & \underbrace{1}_{n-m-1}
\end{array}\right)
$$

or

$$
A_{0}^{\prime}=\left(\begin{array}{cc|c|c|c|c}
1 & & 0 & 1 \cdots 1 & & \tag{3.4}\\
& \ddots & & & D^{\prime} & E^{\prime} \\
\underbrace{0}_{m} & 1 & \underbrace{1 \cdots 1}_{t-1} & 0 \\
1 & \underbrace{}_{1} & \underbrace{}_{n-m-1-1}
\end{array}\right)
$$

where D and E are two $(m-1)$-dimensional $(0,1)$-vectors, and D^{\prime} and E^{\prime} are two m-dimensional $(0,1)$-vectors, with the following properties: none of D, E, D^{\prime}, and E^{\prime} is a 0 -vector, while $D+E$ and $D^{\prime}+E^{\prime}$ are 1 -vectors.
For case (3.3), we transfer all the ones of D to the corresponding positions of E. Since D and E are not 0 -vectors, there must be a submatrix of order 2 of (D, E), say ($\left.\begin{array}{c}d_{i}, e_{i} \\ d, \\ e\end{array}\right)$, having the form $\left(\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0\end{array}\right)$. For case (3.4), we transfer all the ones of E^{\prime} to the corresponding positions of D^{\prime}. Since D^{\prime} and E^{\prime} are not 0 -vectors, there must be a submatrix of order 2 of (D^{\prime}, E^{\prime}), say $\left(\begin{array}{ll}d_{k} & e_{k} \\ d i l\end{array}\right)$, having the form $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. It is also clear that

$$
\operatorname{per}\left(A_{0}(i, j \mid m, m+1)\right) \neq 0
$$

and

$$
\operatorname{per}\left(A_{0}^{\prime}(i, j \mid m+t, m+t+1)\right) \neq 0 .
$$

Therefore, we have

$$
\operatorname{per}\left(A_{0}\right)>\operatorname{per}\left(A^{*}\right)
$$

and

$$
\operatorname{per}\left(A_{0}^{\prime}\right)>\operatorname{per}\left(A^{*}\right) .
$$

This completes the proof of the theorem.

Acknowledgment

We thank the referee for bringing Ref. [1] to our attention.

References

1. R. A. Brualdi, J. L. Goldwasser, and T. S. Michael, Maximum permanents of matrices of zeros and ones, J. Combin. Theory Ser. A 47 (1988), 207-245.
2. G. J. Chang, On the number of SDR of a (t, n)-family, European J. Combin. 10 (1989), 231-234.
3. M. Hall, Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926.
4. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
5. H. B. Mann and H. J. Ryser, Systems of distinct representatives, Amer. Math. Monthly 60 (1953), 397-401.
6. H. Minc, Permanents, in "Encyclopedia of Mathematics and Its Applications," Vol. 6, Addison-Wesley, Reading, MA, 1978.

[^0]: * Research supported in part by the ONR Grant N00014-87-K-0833, in part by a grant from Texas Instruments, Inc., and in part by a grant from the National Education Committee of People's Republic of China.

