515 research outputs found

    Evolution of the business model

    Get PDF

    A Proposed Cross Platform Privacy and Security Framework for Supply Chain Information Sharing

    Get PDF
    Information sharing has become eminent to supply chain management, as it allows supply chain partners to collaborate more closely. However, currently supply chain partners are often on disjoint information platforms, which prevent them from effectively sharing critical supply chain information. One of the main barriers of information sharing is revealing confidential information to unintended parties and thus the disclosure of privacy. Therefore the information sharing needs and characteristics of a supply chain has been analyzed and subsequently a cross platform privacy and security framework to allow safe information sharing has been proposed

    RFID in the warehouse:a literature analysis (1995-2010) of its applications, benefits, challenges and future trends

    Get PDF
    Radio Frequency Identification (RFID) has been identified as a crucial technology for the modern 21st century knowledge-based economy. Some businesses have realised benefits of RFID adoption through improvements in operational efficiency, additional cost savings, and opportunities for higher revenues. RFID research in warehousing operations has been less prominent than in other application domains. To investigate how RFID technology has had an impact in warehousing, a comprehensive analysis of research findings available from articles through leading scientific article databases has been conducted. Articles from years 1995 to 2010 have been reviewed and analysed with respect to warehouse operations, RFID application domains, benefits achieved and obstacles encountered. Four discussion topics are presented covering RFID in warehousing focusing on its applications, perceived benefits, obstacles to its adoption and future trends. This is aimed at elucidating the current state of RFID in the warehouse and providing insights for researchers to establish new research agendas and for practitioners to consider and assess the adoption of RFID in warehousing functions

    Absence of hole pairing in a simple t-J model on the Shastry-Sutherland lattice

    Full text link
    The Shastry-Sutherland model is a two-dimensional frustrated spin model whose ground state is a spin gap state. We study this model doped with one and two holes on a 32-site lattice using exact diagonalization. When t'>0, we find that the diagonal dimer order that exists at half-filling are retained at these moderate doping levels. No other order is found to be favored on doping. The holes are strongly repulsive unless the hopping terms are unrealistically small. Therefore, the existence of a spin gap at half-filling does not guarantee hole-pairing in the present case

    Genetic Based Motion Planning and Evaluation for the B12 Mobile Robotic System

    Get PDF
    Motion Planning for mobile robots is concerned with providing a feasible and efficient path to accomplish a given task. Although many solutions may exist, a condition for obtaining the best (or near best)option may be imposed by the user, where a criterion in terms of the total distance traversed, energy expended or minimum execution time must be achieved. The planning procedure is made more complicated if the robot has to detect and avoid static or dynamic objects in the workcell

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    Entanglement can increase asymptotic rates of zero-error classical communication over classical channels

    Full text link
    It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel. Interestingly, our examples are based on the exceptional simple root systems E7 and E8.Comment: 14 pages, 2 figur

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio
    • …
    corecore