The dynamic capacity theorem characterizes the reliable communication rates
of a quantum channel when combined with the noiseless resources of classical
communication, quantum communication, and entanglement. In prior work, we
proved the converse part of this theorem by making contact with many previous
results in the quantum Shannon theory literature. In this work, we prove the
theorem with an "ab initio" approach, using only the most basic tools in the
quantum information theorist's toolkit: the Alicki-Fannes' inequality, the
chain rule for quantum mutual information, elementary properties of quantum
entropy, and the quantum data processing inequality. The result is a simplified
proof of the theorem that should be more accessible to those unfamiliar with
the quantum Shannon theory literature. We also demonstrate that the "quantum
dynamic capacity formula" characterizes the Pareto optimal trade-off surface
for the full dynamic capacity region. Additivity of this formula simplifies the
computation of the trade-off surface, and we prove that its additivity holds
for the quantum Hadamard channels and the quantum erasure channel. We then
determine exact expressions for and plot the dynamic capacity region of the
quantum dephasing channel, an example from the Hadamard class, and the quantum
erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections;
v3 has correction regarding the optimizatio