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1. Introduction 

Angiogenesis is process by which new blood vessels arise from endothelial cells in the 
existing vessels. In normal circumstances, the initiation, formation, maturation, remodeling 
and regression of endothelial cells in this process are strictly regulated. During tumor 
formation, the regulation of angiogenesis is disrupted and endothelial remodeling and 
regression are usually absent. Therefore, study on angiogenesis is of important relevance to 
cancer biology and therapeutic intervention (Carmeliet & Jain, 2000), especially in cancers 
where tumor growth depends on extensive vascularization (Folkman, 2002). 
A number of in vitro and in vivo models have been used for the study of angiogenesis. 
These include an endothelial cell line derived from human umbilical cord vein endothelial 
cells (HUVEC) (Jaffe et al., 1973) as well as a number of organ specific endothelial cell lines. 
With these cell lines, endothelial cell proliferation, differentiation and migration have been 
characterized. However, information about how endothelial cells interact with their 
neighboring cells is often lacking. In this regards, explant cultures (Brown et al., 1996; Jung 
et al., 2001) might be more representative of the complex interaction between endothelial 
and the supporting cells. Nevertheless, the issues of incomplete microenvironment, animal 
to animal variability and technical difficulties from relatively time-consuming and labor-
intensive tissue isolation and culture might limit the application of these models.  
In vivo models of angiogenesis have also been developed using chick embryo, rabbit and 
mouse (reviewed by Staton et al., 2009). They provide a more accurate physiological model 
of angiogenesis and when implanted with primary tumors or cancer cell lines, they can also 
provide important mechanistic insights to tumor angiogenesis. However, large-scale 
chemical screening with these models is difficult due to the cost and space needed for 
husbandry facilities.  
Zebrafish has emerged as a model organism for the study of genetics and human diseases. 
Compare with other vertebrate models, this small tropical fish offers distinctive advantages. 
Firstly, zebrafish embryos are externally fertilized and optically transparent, allowing direct 
visualization during embryonic development. Secondly, these embryos are amenable to 
reverse genetic manipulation including gene knock-down, over-expression or transgenesis 
by microinjection. Thirdly, the high fecundity of zebrafish enables adequate experimental 
duplicates and facilitates high through-put forward genetic screening. Mating a single pair 
of adult zebrafish can produce hundreds of eggs in one day. Fourthly, stable tissue-specific 
transgenic fish-lines are available, allowing direct visualization of various developmental 
processes. Lastly, husbandry and maintenance of zebrafish colonies are space and cost 
effective. 
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Early zebrafish embryonic vascular development begins at around 12 hour-post-fertilization 
(hpf) when hemangioblasts first exist along the lateral plate mesoderm. Later at around 24 
hpf, the development of dorsal aorta (DA) and dorsal vein (DV), forming the first circulation 
loop. Subsequently, angiogenesis including the development of inter-segmental vessels 
(ISV) and sub-intestinal veins (SIV) occurs. Important growth factors and associated 
receptor tyrosine kinases as well as Notch signaling pathway regulating mammalian 
vascular development are conserved in zebrafish (Liang et al., 1998; Habeck et al., 2002; 
Goishi and Klagsbrun, 2004; Siekmann and Lawson ND, 2007). Here, we explore the 
potential of using zebrafish in vivo to model and more importantly to screen potential 
therapeutic agents targeting tumor angiogenesis. 

2. Zebrafish embryonic angiogenesis 

During zebrafish embryonic development, angiogenesis is characterized by the sprouting of 
inter-segmental vessels in the trunk between each somite initiated around 24 hpf as well as 
the development of sub-intestinal veins initiated around 48 hpf (Isogai et al., 2001; Lawson 
and Weinstein, 2002a). Although some argued the sprouting of ISV would represent type II 
vasculogenesis (Childs et al., 2002), these two processes are well accepted to represent early 
embryonic angiogenesis.  
Traditional assay to examine zebrafish angiogenesis includes alkaline-phosphatase (AP) 
staining of endothelial cells and whole-mount in situ hybridization of genes associated with 
vascular development such as fli1, flk1, flt4, efnb2a etc. Although in situ hybridization could 
provide more specific information such as artery or vein specification (Lawson and 
Weinstein, 2002a), these methods preclude direct and real-time visualization of the 
vasculature. Also, it takes days to complete staining protocols. These shortcomings have 
limited the application of zebrafish model until the recent advancement in zebrafish 
transgenesis and the availability of tissue-specific stable fluorescent reporter transgenic 
lines. With the use of fluorescent report transgenic zebrafish line such as Tg(fli1:egfp) 
(Lawson and Weinstein, 2002b) or Tg(flk1:egfp) (Jin et al., 2005), embryonic angiogenesis 
could be easily monitored real-time under fluorescent microscope. Figure 1 demonstrates 
the development of ISV and SIV at 48 and 72 hpf with Tg(flk1:egfp) and Tg(fli1:egfp).  
 

 

Fig. 1. Endothelial fluorescent transgenic zebrafish embryos showing vascular development 
at (a, c) 48 and (b, d) 72 hpf. (a, c): Tg(flk1:egfp); (b, d): Tg(fli1:egfp). DC: Duct of Curvier;  
DA: Dorsal aorta; DLAV: dorsal longitudinal anastomotic vessels; DV: Dorsal vein; ISV: 
Inter-segmental vessel; SIV: sub-intestinal vessels.  

SIV
SIV 
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3. Modeling tumor angiogenesis in zebrafish 

3.1 Gene regulation of zebrafish angiogenesis  

While angiogenesis is important for tumor growth and metastasis (Folkman, 2002), the 
precise mechanism and regulation of tumor angiogenesis remains unclear. Therefore, 
understanding angiogenesis during normal embryonic development might provide insight 
into how this process would be perturbed during tumor growth. Previous studies  
have demonstrated that genes that are involved in tumor angiogenesis such as galectin-1  
(Thijssen et al., 2006), CXCR7 (Miao et al., 2007), angiomodulin (Hooper et al., 2009) and  
PDGFR-β/B-Raf (Murphy et al., 2010) may also play a role in embryonic angiogenesis. The 
zebrafish is unique in this respect because the circulatory system is dispensable during the 
first few days of embryonic development, enabling study of genes by specific knock-down 
that is otherwise lethal in the mammalian system.  

3.2 Survivin and zebrafish angiogenesis  

We have previously identified zebrafish survivin-1 (Ma et al., 2007a) as an important 
regulator of embryonic angiogenesis. Survivin exerts its effect through anti-apoptosis and 
interaction with VEGF receptor kinase pathway. Survivin is the smallest member of the 
inhibitor of apoptosis (IAP) gene family with a single Baculovirus IAP Repeat (BIR) domain 

and an extended –COOH terminal -helical coiled coil (Altieri, 2004). While it is not 
expressed in most normal adult tissues, survivin is highly expressed in solid and 
hematological malignancies, where it has been linked to tumor angiogenesis and 
represented a potential target for anti-cancer therapy (Graaf et al., 1998; Altieri, 2003). 
During human and murine embryonic development, survivin is ubiquitously expressed 
(Adida et al., 1998). However, homozygous knock-out of survivin in mouse ES cells results in 
disrupted microtubule formation and polyploidy as well as early embryonic fatality, 
precluding characterization of its functions during murine development (Uren et al., 2000) 
and therefore zebrafish embryo was considered an alternative embryonic model.  
 

 

Fig. 2. Expression of survivin-1 in zebrafish embryo as shown by ISH at 26 hpf. (a,b) Lateral 
view of whole-mount ISH and black arrowheads denote expression along axial vasculatures. 
(c) Transverse section of whole-mount ISH showing expression at neural tube and axial 
vasculatures. Adopted and modified from figure originally published in Ma et al 2007a 
(with permission). 
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In zebrafish embryos, survivin gene is duplicated into survivin-1 and survivin-2. During 
embryonic development, survivin-1 and survivin-2 are differentially expressed with 
distinctive functions in the vasculature and hematopoietic tissues (Ma et al., 2007a; Ma et al., 
2009). Both survivin-1 and survivin-2 share a highly homologous functional BIR-domain 
and similar functions at cellular level.  Therefore, the distinctive roles of survivin-1 and 
survivin-2 during embryonic development may be related to a large extent to their 
difference in spatial expression (Ma et al., 2009). In particular, survivin-1 predominantly 
expressed along the neural tube and axial vasculature at 26 hpf (Figure 2). Knock-down of 
survivin-1 with anti-sense morpholino gives rise to defective angiogenesis as shown by 
defective spouting of ISV as well as SIV (Figure 3). Vasculogenesis, demonstrated by the 
formation of axial vasculatures, was not affected.  
 

 

Fig. 3. Effect of survivin-1 knock-down on zebrafish embryonic angiogenesis. (a, b): Confocal 
microscopy of Tg(fli1:egpf) embryos at 48 hpf either (a) uninjected or (b) injected with 
survivin-1  morpholino (MO). Noted the defective sprouting of ISV and the failure to form 
dorsal longitudinal anastomotic vessels (DLAV) in survivin-1 (Sur1) morphant. AV: Axial 
vasculatures. (c, d): Tg(fli1:egfp) embryos at 96 hpf showing failure to develop the SIV in Sur1 
morphant. Adopted and modified from figure originally published in Ma et al 2007a (with 
permission). 

In vitro and tumorigenesis studies have shown that survivin mediates the angiogenic effects of 
VEGF (Tran et al., 1999; Mesri et al., 2001; Beierle et al., 2005). In zebrafish embryos, VEGF 
signaling is also important for angiogenesis. The schwentine mutant with defective VEGFR 
tyrosine kinase, flk1 (Habeck et al., 2002) has perturbed angiogenesis. In addition, 

phospholipase C- (plc-) mutant (y10) (Lawson et al., 2003) as well as knock-down morphant 
(Ma et al., 2007b) also exhibit specific defects in angiogenesis. VEGF induces ectopic 
angiogenesis and up-regulates survivin-1 mRNA expression (Figure 4a-c), suggesting that 
survivin-1 may mediate the angiogenic effect of VEGF. For instance, we only detect modest 
apoptotic TUNEL staining in the axial vasculature of survivin-1 morphant (Figure 4d, e) but 
not a direct causal link between increased apoptosis and the angiogenesis defect. VEGF might 
prevent apoptosis (Gupta et al., 1999) and VEGF inhibitors exert pro-apoptotic effect on 
endothelial cells (reviewed by Epstein, 2007). While apoptotic signal was readily detected 
along the neural tube of survivin-1 morphant (Figure 4d, e), survivin-1 might exert its anti-
apoptotic effect in a non-cell autonomous fashion downstream of VEGF, regulating the 
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signaling cues for angioblasts to migrate from aorta to the dorsal aspect of the neural tube and 
to the inter-phase between notochord and the somites before ISV sprouting (Childs et al., 2002).  

3.3 Zebrafish xenograft model of tumor angiogenesis 

Recently, zebrafish xenograft models have been developed through xenotransplantation of 
human primary tumor cells or cancer cell lines into yolk sac of 48 hpf zebrafish embryos 
(Lee LM et al., 2005; Haldi et al., 2006; Topczewska et al., 2006; Nicoli et al., 2007; Marques et 
al., 2009). Without a functional immune system at this early embryonic stage, immuno-
suppression is not needed. The experimental procedures of transplanting fluorescent labeled 
human cancer cells into perivitelline space of 48 hpf zebrafish embryos was subsequently 
published (Nocoli and Presta, 2007). In these models, cancer cells were shown to be 
engrafted into the yolk sac with proliferation and migration. More importantly, 
angiogenesis were induced in SIV with infiltration of blood vessels into the cancer mass. 
Combining with fluorescent reporter transgenic lines, these models serve as a promising 
platform to study the biology of tumor angiogenesis and its microenvironment including 
hypoxia (Lee SL et al., 2009) and LIM domain kinase 1 and 2 (Vlecken and Bagowski, 2009).  
 

 

Fig. 4. Survivin-1 interact with VEGF signaling and exert anti-apoptotic activity during 
zebrafish embryonic angiogenesis. (a, b): Microscopy of Tg(fli1:egpf) embryos at 96 hpf either 
(a) uninjected or (b) injected with human VEGF (2 ng) protein, which induces ectopic 
angiogenesis (white arrows). (c): relative expression of survivin-1 mRNA measured by 
quantitative RT-PCR. (d, e): Whole-mount TUNEL assay in embryos injected with either (e) 
random sequence or (b) Sur1 MO, which shows positive staining in the area of developing 
neural tube and at the vicinity of the axial vasculatures (AV) in Sur1 morphant. Adopted 
and modified from figure originally published in Ma et al 2007a (with permission). 
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4. Screening potential therapeutic agents with zebrafish embryos 

4.1 Large-scale chemical screening platform  

Since angiogenesis is crucial for tumor growth and progression, anti-angiogenic agents 
have been investigated as potential anti-cancer therapies (Demetri et al., 2002; Cunnigham 
et al., 2004; Shepherd et al., 2005; Van et., al 2007; Hudes et al., 2007). Chemical screening 
based on in vivo tumor xenograft models are often limited by the relatively low 
throughput and long read-out time. In this respect, the zebrafish embryo is uniquely 
suitable for large-scale chemical screening because of the advantages aforementioned. In 
particular, using the Tg(flk1:egfp) or Tg(fli1:egfp) embryos, one could conduct large-scale in 
vivo screening against chemical libraries in a cost-effective way. To examine their effects 
on the initiation and regression of angiogenesis, embryos will be exposed to chemicals at 
different concentrations and developmental stages, either before angiogenesis (12 hpf), or 
after sprouting of ISV and development of SIV (48 hpf). Chemicals that specifically inhibit 
ISV and SIV formation after 12 hpf likely inhibit the initiation of angiogenesis and those 
that affect ISV and SIV after their formation at 48 hpf likely induce vascular regression 
(Figure 5).  
 

 

Fig. 5. Cost-effective anti-angiogenic chemicals screening platform with zebrafish 
embryos. 

Both anti-angiogenic mechanisms are considered important component in cancer therapy. 
This protocol may enable identification of potential anti-angiogenic compounds at high 
throughput and provide us with novel information about the link between embryonic and 
tumor angiogenesis. Figure 6 shows the use of Tg(flk1:egfp) embryos as a platform to 
demonstrate anti-angiogenic activity of VEGFR tyrosine kinase inhibitor and anti-cancer 
drugs (multi-kinase inhibitors) sorafenib and sunitinib.  

Multiple chemicals can be tested at 
different concentration with hundreds of 
embryos easily available from mating 
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Fig. 6. Demonstration of anti-angiogenic effect of kinase inhibitors with transgenic zebrafish 
embryos. Microscopy of Tg(flk1:egfp) embryos at 48 hpf treated with (a) DMSO, (b) VEGFR 
tyrosine kinase inhibitor, (c) sorafenib and (d) sunitinib. Treatment with these inhibitors 
significantly perturbed zebrafish embryonic angiogenesis as shown by development of ISV 
and SIV.  

5. Conclusion 

Since angiogenesis is crucial for tumor growth and progression, it may present a potential 
target for cancer therapy. A number of anti-angiogenic agents targeting at the VEGF 
signaling pathway are being evaluated and large-scale chemical screening is needed to 
provide more candidates that can be tested in clinical trials. In this respect, the zebrafish 
embryos have emerged as a promising model that can shed important lights to the biology 
of physiological and tumor angiogenesis at whole organism level and allow cost-effective 
high throughput chemical screening. A number of new genetic modification technologies 
are now available that can specifically interrogate gene function related to angiogenesis. For 
instance, artificial endonucleases constructed by fusing non-specific nuclease domain with 
specific DNA binding domains (Ekker, 2008; Foley et al., 2009a; Foley et al., 2009b; Miller et 
al., 2011; Cermak et al., 2011; Sander et al., 2011) can now be used to target specific genes 
from zebrafish genome. An in vivo protein trap mutagenesis system (Clark et al., 2011) is 

Sunitinib (5μM)
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also available that can simultaneously reveal spatio-temporal protein expression dynamics 
and assess gene function in zebrafish embryos. These new technologies greatly improve the 
efficiency of zebrafish genetic modifications and forward genetic screening, making 
zebrafish a more powerful model organism for angiogenesis.  
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