71 research outputs found

    CXCL5 limits macrophage foam cell formation in atherosclerosis

    Get PDF
    The ELR+-CXCL chemokines have been described typically as potent chemoattractants and activators of neutrophils during the acute phase of inflammation. Their role in atherosclerosis, a chronic inflammatory vascular disease, has been largely unexplored. Using a mouse model of atherosclerosis, we found that CXCL5 expression was upregulated during disease progression, both locally and systemically, but was not associated with neutrophil infiltration. Unexpectedly, inhibition of CXCL5 was not beneficial but rather induced a significant macrophage foam cell accumulation in murine atherosclerotic plaques. Additionally, we demonstrated that CXCL5 modulated macrophage activation, increased expression of the cholesterol efflux regulatory protein ABCA1, and enhanced cholesterol efflux activity in macrophages. These findings reveal a protective role for CXCL5, in the context of atherosclerosis, centered on the regulation of macrophage foam cell formation

    Senescence Is the Main Trait Induced by Temozolomide in Glioblastoma Cells.

    Get PDF
    First-line drug in the treatment of glioblastoma, the most severe brain cancer, is temozolomide (TMZ), a DNA-methylating agent that induces the critical damage O <sup>6</sup> -methylguanine (O <sup>6</sup> MeG). This lesion is cytotoxic through the generation of mismatch repair-mediated DNA double-strand breaks (DSBs), which trigger apoptotic pathways. Previously, we showed that O <sup>6</sup> MeG also induces cellular senescence (CSEN). Here, we show that TMZ-induced CSEN is a late response which has similar kinetics to apoptosis, but at a fourfold higher level. CSEN cells show a high amount of DSBs, which are located outside of telomeres, a high level of ROS and oxidized DNA damage (8-oxo-guanine), and sustained activation of the DNA damage response and histone methylation. Despite the presence of DSBs, CSEN cells are capable of repairing radiation-induced DSBs. Glioblastoma cells that acquired resistance to TMZ became simultaneously resistant to TMZ-induced CSEN. Using a Tet-On glioblastoma cell system, we show that upregulation of MGMT immediately after TMZ completely abrogated apoptosis and CSEN, while induction of MGMT long-term (>72 h) after TMZ did not reduce apoptosis and CSEN. Furthermore, upregulation of MGMT in the senescent cell population had no impact on the survival of senescent cells, indicating that O <sup>6</sup> MeG is required for induction, but not for maintenance of the senescent state. We further show that, in recurrent GBM specimens, a significantly higher level of DSBs and CSEN-associated histone H3K27me3 was observed than in the corresponding primary tumors. Overall, the data indicate that CSEN is a key node induced in GBM following chemotherapy

    The helicity amplitudes A1/2_{1/2} and A3/2_{3/2} for the D13(1520)_{13}(1520) resonance obtained from the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction}

    Full text link
    The helicity dependence of the γppπ0\vec{\gamma} \vec{p} \to p \pi^0 reaction has been measured for the first time in the photon energy range from 550 to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4π\pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. These data are predominantly sensitive to the D13(1520)D_{13}(1520) resonance and are used to determine its parameters.Comment: 5 pages, 4 figure

    First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

    Full text link
    A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4π\pi detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability γ0\gamma_0 determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table

    The Different Function of Single Phosphorylation Sites of Drosophila melanogaster Lamin Dm and Lamin C

    Get PDF
    Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S25E, S45E, T435E, S595E). We also analyzed lamin C (A-type) and its mutant S37E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R64H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S45E mutant was insoluble, in contrast to lamin C S37E. Lamin Dm T435E (C-terminal cdc2 site) and R64H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S45E and T435E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T435E was cytoplasmic and showed higher mobility in FRAP assay

    Religious Diversity and Conceptual Schemes: Critically Appraising Internalist Pluralism

    No full text
    Is a philosophical theory needed to ‘underwrite’ attitudes of toleration and respect in a multicultural and religiously diverse world? Many philosophers of religion have thought so, including Victoria Harrison. This article interrogates Harrison’s theory of internalist pluralism, which, though offering a welcome alternative to other theories, such as John Hick’s ‘pluralistic hypothesis’, nevertheless faces problems. Questioning the coherence of the theory’s account of how the existence of objects of worship can avoid being fully conceptual-scheme dependent, and raising doubts about its pretensions to promote interreligious harmony, I also critically discuss the common philosophical tendency to work with under-described and insufficiently analysed examples. What philosophy ought to be able to offer in relation to religious diversity, I propose, is attentiveness to nuances and particularities, thereby aiding religious understanding without the need for a general theory

    ALDH1A3 Segregated Expression and Nucleus-Associated Proteasomal Degradation Are Common Traits of Glioblastoma Stem Cells

    No full text
    Aldehyde dehydrogenase 1 isoforms A1 and A3 have been implicated as functional biomarkers associated with distinct molecular subtypes of glioblastoma and glioblastoma stem cells. However, the exact roles of these isoforms in different types of glioma cells remain unclear. The purpose of this study was to dissect the association of A1 or A3 isoforms with stem and non-stem glioblastoma cells. This study has undertaken a systematic characterization of A1 and A3 proteins in glioblastoma tissues and a panel of glioblastoma stem cells using immunocytochemical and immunofluorescence staining, Western blot and the subcellular fractionation methodology. Our main findings are (i) human GSCs express uniformly ALDH1A3 but not the ALDH1A1 isoform whereas non-stem glioma cells comparably express both isoforms; (ii) there is an abundance of ALDH1A3 peptides that prevail over the full-length form in glioblastoma stem cells but not in non-stem glioma cells; (iii) full-length ALDH1A3 and ALDH1A3 peptides are spatially segregated within the cell; and (vi) the abundance of full-length ALDH1A3 and ALDH1A3 peptides is sensitive to MG132-mediated proteasomal inhibition. Our study further supports the association of ALDH1A3 with glioblastoma stem cells and provide evidence for the regulation of ALDH1A3 activities at the level of protein turnover
    corecore