69 research outputs found

    Extraction and recovery of toxic acidic components from highly acidic oil using ionic liquids

    Get PDF
    Naphthenic acid (NA) is a toxic compound that exists in the effluent discharged from highly acidic oil refineries. The amount of NA present in acidic crude oil can be as high as 4 wt%. The complicated structure of NA poses a challenge for oil refineries in their effort to extract NA from the heavy crude oil in an economical and environmental friendly manner. In the current study the extraction of NA from highly acidic model oil by ionic liquid (ILs) was performed using 1,8-diazobicycloundec-7-ene (DBU) based cation in combination with the thiocyanate anion. A detailed computer simulation study on the mechanism of NA extraction by the ILs was also performed. The extracted NA was completely recovered and the ILs used were regenerated by simple addition of water. It was found that increasing of the alkyl chain length increases the percent NA removal. Computer simulation suggests those thiocyanate anions are found to be playing a major role in the NA extraction process

    Ultrasonic-Assisted Extraction of Toxic Acidic Components from Acidic Oil Using 1,8-Diazobicyclo[5.4.0]undec-7-ene-Based Ionic Liquids

    Get PDF
    [Image: see text] Ionic liquids (ILs) show remarkable performance in enhancing the naphthenic acid extraction efficiency and decreasing the extraction time. However, the ultrasonic-assisted IL-based extraction of naphthenic acid is merely addressed previously. Therefore, this study investigated the impact of essential ultrasonic parameters, including amplitude and time, on naphthenic acid extraction using different ILs, and the system was optimized for maximum extraction. The IL 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) with thiocyanate anions revealed the highest efficiency in extracting naphthenic acid from a model oil (dodecane) at optimized conditions, and the experimental liquid–liquid equilibrium data were obtained at atmospheric pressure for the mixture of dodecane, [DBU], thiocyanate, and naphthenic acid. In addition, the influence of the chain length of the cation (hexyl, octyl, or decyl) on the extraction efficiency was also evaluated by determining the distribution coefficients, and the conductor-like screening model for real solvents (COSMO-RS) study was carried out at infinite dilution. It was found that [DBU-Dec] [SCN] gives the best extraction efficiency and has a distribution coefficient of 9.2707 and a performance index of 49.48. Based on these values, ILs can be ordered as follows: [DBU-Dec] [SCN] > [DBU-Oct][SCN] > [DBU-Hex][SCN] in the decreasing order of performance index 49.48, 41.58, and 28.13. Moreover, non-random two liquid and Margules thermodynamic models were employed to investigate the interaction parameters between the components. Both models showed excellent agreement with the experimental results and could successfully be used for ultrasonic-assisted IL extraction of naphthenic acid

    Ionic liquid electrolyte selection for high voltage supercapacitors in high-temperature applications

    Get PDF
    Systematic analyses of electrolyte physicochemical properties are important to screen ionic liquids (ILs) and understand the electrochemical performance of supercapacitor electrolytes. This study harmonizes the evaluation of electrochemical performance and transport properties of eight shortlisted ILs from 22 commercially available hydrophobic ILs toward achieving a ≥ 5 V supercapacitor capable of high-temperature operation (up to 353.15 K). The eight ILs are N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([Pyr 1, 3] [TFSI], N-Pentyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([Pyr 1, 5] [TFSI]), N-Propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ([Pyr 1, 3] [FSI]), 1-Methyl-1-(2-methoxyethyl)pyrrolidinium Bis(trifluoromethanesulfonyl)imide ([Pyr 1, 102] [TFSI]), 1-Methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide ([Pip 1, 3] [TFSI]), 1-Methyl-1-propylpiperidinium bis(fluorosulfonyl)imide ([Pip 1, 3] [FSI]), N-Trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide ([N 111, 3] [TFSI]), N-Trimethyl-N-hexylammonium bis(trifluoromethanesulfonyl)imide ([N 111, 6] [TFSI]). The density, viscosity, and ionic conductivity of the eight ILs were measured between 278.15 and 373.15 K to confirm the effects of temperature and ion structure before electrochemical characterization. The [FSI]-based ILs ([Pip 1, 3] [FSI] and [Pyr 1, 3] [FSI]) showed lower densities and viscosities compared to other ILs among the eight based on [TFSI]. Consequently, the highest conductivity was obtained for [Pyr 1, 3] [FSI]. Cyclic voltammetry and impedance spectroscopy was performed on supercapacitors assembled with the eight ILs as electrolytes between 298.15–353.15 K. Conclusion from the two-electrode supercapacitors using multi-walled carbon nanotubes showed the 6 most-applicable ILs towards the targeted ≥ 5 V SC at high temperature are [Pip 1, 3] [TFSI] (5.4 V), [Pip 1, 3] [FSI] (5 V), [N 111, 3] [TFSI] (5.1 V), [N 111, 6] [TFSI] (5.2 V), [Pyr 1, 102] [TFSI] (5.2 V), and [Pyr 1, 5] [TFSI] (5.2 V)

    Establishing Predictive Models for Solvatochromic Parameters of Ionic Liquids

    No full text
    The use of ionic liquids (ILs) in applications ranging from catalysis to reaction media in organic synthesis has been successfully demonstrated in several cases. For any given IL application, fundamental properties, such as viscosity, thermal stability, and toxicity have to be considered. Another property of interest is the polarity, which is a crucial indicator of solvent effects on chemical processes. Given the near-infinite combinations of cations and anions, experimental determination of solvatochromic parameters, such as the hydrogen-bond acidity and basicity, and dipolarity-polarizability is prohibitive. To address this, we evaluate the utility of alternative schemes based on parameters derived from COSMO-RS (COnductor-like Screening MOdel for Real Solvents) computations. The scheme is applied to a large library of yet-to-be-synthesized ionic liquids, to identify promising candidates for applications in biomass dissolution

    Base stable quaternary ammonium ionic liquids

    No full text
    Ionic liquids with the bis(2-ethylhexyl)dimethylammonium cation, [BEDMA]+, were prepared by a halide-free route starting from the readily available secondary amine bis(2-ethylhexyl)amine. The following anions were considered: chloride, bromide, iodide, nitrate, hydrogensulphate, dihydrogenphosphate, formate, acetate, propionate, trifluoroacetate, methyl sulphate, methanesulphonate, tosylate, isonicotinate, nicotinate and picolinate. Several of the compounds are room-temperature ionic liquids, albeit with a high viscosity. All ionic liquids are soluble in water. The ionic liquids are very stable in strongly alkaline medium. No signs of decomposition could be observed by contact of the chloride ionic liquid with 50 wt% sodium hydroxide, even after prolonged heating at 80 C. The high stability against strong bases is attributed to the branched structure of the quaternary ammonium cation, which blocks the Hofmann elimination reaction.status: publishe

    An Open Access Data Set Highlighting Aggregation of Dyes on Metal Oxides

    No full text
    The adsorption of a dye to a metal oxide surface such as TiO2, NiO and ZnO leads to deprotonation and often undesirable aggregation of dye molecules, which in turn impacts the photophysical properties of the dye. While controlled aggregation is useful for some applications, it can result in lower performance for dye-sensitized solar cells. To understand this phenomenon better, we have conducted an extensive search of the literature and identified over 4000 records of absorption spectra in solution and after adsorption onto metal oxide. The total data set comprises over 3500 unique compounds, with observed absorption maxima in solution and after adsorption on the semiconductor electrode. This data may serve to provide further insight into the structure-property relationships governing dye-aggregation behaviour

    The Ionic Liquid Property Explorer: An Extensive Library of Task-Specific Solvents

    No full text
    Ionic liquids have a broad spectrum of applications ranging from gas separation to sensors and pharmaceuticals. Rational selection of the constituent ions is key to achieving tailor-made materials with functional properties. To facilitate the discovery of new ionic liquids for sustainable applications, we have created a virtual library of over 8 million synthetically feasible ionic liquids. Each structure has been evaluated for their-task suitability using data-driven statistical models calculated for 12 highly relevant properties: melting point, thermal decomposition, glass transition, heat capacity, viscosity, density, cytotoxicity, CO 2 solubility, surface tension, and electrical and thermal conductivity. For comparison, values of six properties computed using quantum chemistry based equilibrium thermodynamics COSMO-RS methods are also provided. We believe the data set will be useful for future efforts directed towards targeted synthesis and optimization

    Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters

    No full text
    The effect of ethanedioic acid (EdA) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation (HDO), isomerization, kinetics and Arrhenius parameters of octadec-9-enoic acid (OA) into biofuel in this report. This was achieved via synthesis of two catalysts; the first, nickel alumina catalyst (Ni/Al2O3) was via the incorporation of inorganic Ni precursor into Al2O3; the second was via the incorporation nickel oxalate (NiOx) prepared by functionalization of Ni with EdA into Al2O3 to obtain organometallic NiOx/Al2O3 catalyst. Their characterization results showed that Ni species present in Ni/Al2O3 and NiOx/Al2O3 were 8.2% and 9.3%, respectively according to the energy dispersive X-ray result. NiOx/Al2O3 has comparably higher Ni content due to the EdA functionalization which also increases its acidity and guarantees high Ni dispersion with weaker metal-support-interaction leading to highly reducible Ni as seen in the X-ray diffraction, X-ray photoelectron spectroscopy, TPR and Raman spectroscopy results. Their activities tested on the HDO of OA showed that NiOx/Al2O3 did not only display the best catalytic and reusability abilities, but it also possesses isomerization ability due to its increased acidity. The NiOx/Al2O3 also has the highest rate constants evaluated using pseudo-first-order kinetics, but the least activation energy of 176 kJ/mol in the biofuel formation step compared to 244 kJ/mol evaluated when using Ni/Al2O3. The result is promising for future feasibility studies toward commercialization of catalytic HDO of OA into useful biofuel using organometallic catalysts
    corecore