112 research outputs found
The Effect of Nitrogen Fixation and Plant Species on Ammonium and Amino Acids Soil Contents
Grass and legume intercropping systems, particularly ryegrass-clover mixed cultures, increase grasslands productivity, due to the clover nitrogen (N) fixation and to the transfer of part it to the companion grass. The objective of this experiment was to determine if N fixation and plant species could modify ammonium and amino acids soil contents
Modelling of Nitrogen Allocation and Partitioning Within Lucerne (\u3cem\u3eMedicago Sativa\u3c/em\u3e) Shoot Tissues During Recovery from Defoliation: An Approach to Estimate Forage Production and Nitrogen Composition
Lucerne has been grown over centuries for forage. Its forage production is strongly correlated to the initial taproot and stubble N reserves (Avice et al., 1996; Meuriot et al., 2004). However, the influence of cutting management on the level of N storage and the contribution of these N reserves to forage production still remain unclear and need to be studied at the whole plant level. For this purpose, a deterministic model of N allocation within the different organs and partitioning within different biochemical N pools was developed for lucerne with high and low initial N status and cutting heights of 6 or 15 cm
Decreased D2-40 and increased p16INK4A immunoreactivities correlate with higher grade of cervical intraepithelial neoplasia
<p>Abstract</p> <p>Background</p> <p>D2-40 has been shown a selective marker for lymphatic endothelium, but also shown in the benign cervical basal cells. However, the application of D2-40 immunoreactivity in the cervical basal cells for identifying the grade of cervical intraepithelial neoplasia (CIN) has not been evaluated.</p> <p>Methods</p> <p>In this study, the immunoreactive patterns of D2-40, compared with p16<sup>INK4A</sup>, which is currently considered as the useful marker for cervical cancers and their precancerous diseases, were examined in total 125 cervical specimens including 32 of CIN1, 37 of CIN2, 35 of CIN3, and 21 of normal cervical tissue. D2-40 and p16<sup>INK4A </sup>immunoreactivities were scored semiquantitatively according to the intensity and/or extent of the staining.</p> <p>Results</p> <p>Diffuse D2-40 expression with moderate-to-strong intensity was seen in all the normal cervical epithelia (21/21, 100%) and similar pattern of D2-40 immunoreactivity with weak-to-strong intensity was observed in CIN1 (31/32, 97.2%). However, negative and/or focal D2-40 expression was found in CIN2 (negative: 20/37, 54.1%; focal: 16/37, 43.2%) and CIN3 (negative: 22/35, 62.8%; focal: 12/35, 34.3%). On the other hand, diffuse immunostaining for p16<sup>INK4A </sup>was shown in 37.5% of CIN1, 64.9% of CIN2, and 80.0% of CIN3. However, the immunoreactive pattern of D2-40 was not associated with the p16<sup>INK4A </sup>immunoreactivity.</p> <p>Conclusions</p> <p>Immunohistochemical analysis of D2-40 combined with p16<sup>INK4A </sup>may have a significant implication in clinical practice for better identifying the grade of cervical intraepithelial neoplasia, especially for distinguishing CIN1 from CIN2/3.</p
GR-891: a novel 5-fluorouracil acyclonucleoside prodrug for differentiation therapy in rhabdomyosarcoma cells
Differentiation therapy provides an alternative treatment of cancer that overcomes the undesirable effects of classical chemotherapy, i.e. cytotoxicity and resistance to drugs. This new approach to cancer therapy focuses on the development of specific agents designed to selectively engage the process of terminal differentiation, leading to the elimination of tumorigenic cells and recovery of normal cell homeostasis. A series of new anti-cancer pyrimidine acyclonucleoside-like compounds were designed and synthesized by structural modifications of 5-fluorouracil, a drug which causes considerable cell toxicity and morbidity, and we evaluated their applicability for differentiation therapy in human rhabdomyosarcoma cells. We tested the pyrimidine derivative GR-891, (RS)-1-{[3-(2-hydroxyethoxy)-1-isopropoxy]propyl}-5-fluorouracil, an active drug which shows low toxicity in vivo and releases acrolein which is an aldehyde with anti-tumour activity. Both GR-891 and 5-fluorouracil caused time- and dose-dependent growth inhibition in vitro; however, GR-891 showed no cytotoxicity at low doses (22.5 μmol l−1 and 45 μmol l−1) and induced terminal myogenic differentiation in RD cells (a rhabdomyosarcoma cell line) treated for 6 days. Changes in morphological features and in protein organization indicated re-entry in the pathway of muscular maturation. Moreover, GR-891 increased adhesion capability mediated by the expression of fibronectin, and did not induce overexpression of P-glycoprotein, the mdr1 gene product, implicated in multidrug resistance. New acyclonucleoside-like compounds such as GR-891 have important potential advantages over 5-fluorouracil because of their lower toxicity and their ability to induce myogenic differentiation in rhabdomyosarcoma cells. Our results suggest that this drug may be useful for differentiation therapy in this type of tumour. 1999 Cancer Research Campaig
Lactobacillaceae and Cell Adhesion: Genomic and Functional Screening
The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment
Nod2 Mediates Susceptibility to Yersinia pseudotuberculosis in Mice
Nucleotide oligomerisation domain 2 (NOD2) is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs) in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice
Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface
The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake
Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging
Dielectric metasurfaces support resonances that are widely explored both for far-field wavefront shaping and for near-field sensing and imaging. Their design explores the interplay between localised and extended resonances, with a typical trade-off between Q-factor and light localisation; high Q-factors are desirable for refractive index sensing while localisation is desirable for imaging resolution. Here, we show that a dielectric metasurface consisting of a nanohole array in amorphous silicon provides a favourable trade-off between these requirements. We have designed and realised the metasurface to support two optical modes both with sharp Fano resonances that exhibit relatively high Q-factors and strong spatial confinement, thereby concurrently optimizing the device for both imaging and biochemical sensing. For the sensing application, we demonstrate a limit of detection (LOD) as low as 1 pg/ml for Immunoglobulin G (IgG); for resonant imaging, we demonstrate a spatial resolution below 1 µm and clearly resolve individual E. coli bacteria. The combined low LOD and high spatial resolution opens new opportunities for extending cellular studies into the realm of microbiology, e.g. for studying antimicrobial susceptibility
- …